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In this supplementary material, we first provide more details about our
MarineInst20M dataset (we release our MarineInst20M dataset at https://
github.com/zhengziqiang/MarineInst20M) used for optimizing the Marine-
Inst in Section 1. Furthermore, we provide more preliminaries about our pro-
posed MarineInst, as well as the implementation details of our model in Sec-
tion 2. Then more experimental results on underwater salient object segmenta-
tion, underwater object detection, text-to-image synthesis, instruction-following
instance understanding, image storytelling, instruction-following segmentation,
ablation studies, comparison with Mask R-CNN, and more qualitative results
are provided in Section 3. More discussions about the failure cases and gener-
alization ability of MarineInst, the main contribution of MarineInst over exist-
ing algorithms, related works, and the potential future directions are provided
in Section 4.

1 MarineInst20M

1.1 Dataset Construction

Acquiring annotated marine datasets for training models is challenging since it
is difficult to capture high-quality marine/underwater images due to the specific
conditions of the environment, and it also requires domain expertise to label
the collected imagery. The dynamic nature of underwater environments presents
a great challenge for consistent and accurate data collection. Unlike terrestrial
datasets, underwater datasets are limited and costly to obtain, which hampers
the development of robust and accurate foundation models in the marine field for
effective scene understanding from visual images. Factors such as water turbidity,
varying light conditions, and the movement of water currents can significantly
affect visibility and image quality, making it difficult to obtain clear and reliable
visual data.

To address these challenges, our MarineInst20M is constructed from three
main data sources: 1) existing public marine/underwater datasets; 2) manually
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collected and labeled images from private data, existing public datasets, and
YouTube videos; and 3) public Internet images. We illustrate the remarkable
diversity of our constructed MarineInst20M dataset in Figure 2. The images are
with viewpoint variations, and visibility changes, from tiny plankton to large
marine mammals and etc. We provide a comprehensive overview of our dataset
construction procedures in Figure 1. Please follow the sorted procedures to better
understand the construction details.
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Fig. 1: Construction flow of MarineInst20M. Best viewed in color and follow the sorted
procedures.

We provide comprehensive and informative statistics about our constructed
MarineInst20M dataset in Table 1. For better illustration, we have also provided
information of 1) # of object categories; 2) # of images; 3) annotation type;
4) whether the dataset contains non-organism objects; 5) image diversity; 6)
whether the dataset contains complicated objects; 7) the original task/purpose
of proposing such datasets or image collections; and 8) detailed statistics of the
total images, total instance masks and average instance mask within each image.
For better illustration, we have also provided the composition visualization of
the instance masks from our MarineInst20M dataset in Figure 3. We refer the
readers to check Figure 3 and Table 1 for more details about the composition
of our constructed MarineInst20M dataset. In the following subsections, we will
discuss the implementation details of building our MarineInst20M dataset in
detail.
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Table 1: The detailed statistics of the proposed MarineInst20M dataset for opti-
mizing our MarineInst. We provide the information of 1) # of categories; 2) # of
images; 3) the annotation type including category, point, bounding box, and mask ; 4)
whether the dataset provides the annotations for non-organism objects (Non-org. for
short); 5) the diversity richness of various datasets or image collections; 6) whether
the dataset contains the complicated objects e.g., camouflaged objects, objects with
irregular boundaries and non-rigid objects (Comp. for short); 7) the original task and
motivation for proposing such datasets or collecting imagery/videos; and 8) the # of
images, total instance masks and average instance mask within each image (denoted
as Img/Inst./Aver.) after our processing procedures. Æ denotes the instance masks
are generated by models based on various prompts or automatically (no prompts).

denotes instance masks are annotated by human annotators based on our written
labeling tool. “−” indicates that the number cannot be reported or it is difficult to pro-
vide an accurate statistic. Foregr. denotes that the foreground objects are annotated
(categories may vary from different images).

Datasets Categories Images Annotation Non-org. Diversity Comp. Original task and motivation Img/Inst./Aver.

Mastr1325 [20] 3 1,325 Mask ✓ Medium ✘ Marine obstacle segmentation 178/215/1.21
Marine Fouling [29] 3 267 BBOX ✘ Low ✓ Biological fouling detection 221/508/2.30

LaRS [97] 4 4,006 Mask ✓ Medium ✘ Marine obstacle segmentation 367/562/1.53
Fish4Knowledge [19] Foregr. 27,370 BBOX ✘ Low ✘ Fish detection and tracking 470/470/1.00

MAS3K [52] 37 3,103 Mask ✘ Medium ✓ Marine animal segmentation 553/651/1.18
SUIM [41] 8 1,500 Mask ✓ Medium ✘ Underwater scene segmentation 589/1,091/1.85

Aquarium [3] 7 638 BBOX ✘ Medium ✘ Underwater object detection 632/4,182/6.62
UTB180 [16] Foregr. 58,000 BBOX ✘ Low ✘ Underwater visual object tracking 900/900/1.00
TACO [33] − 1,500 BBOX ✘ Medium ✘ Litter detection 1,109/2,656/2.39

Brackish [62] Foregr. 15,084 BBOX ✘ Low ✘ Underwater fish detection and tracking 1,423/3,168/2.23
FLOW [27] Foregr. 2,000 BBOX ✘ Medium ✘ Litter detection 1,825/3,850/2.11
DUO [56] 3 2,227 BBOX ✘ Medium ✘ Underwater object detection 2,170/13,090/6.03

DeepFish [71] 1 39,766 BBOX ✘ Medium ✘ Fish detection 4,396/12,381/2.82
Underwater Garbage [8] 15 416 BBOX ✓ Medium ✘ Underwater garbage detection 4,542/9,386/2.07

CoralNet [18] 191 416,512 Cate./Point ✓ High ✓ Sparse point based coral reef identification 4,615/5,753/1.25
WaterMask [53] 7 4,628 Mask ✓ High ✘ Underwater instance segmentation 4,628/28,410/6.14
IOCFish5k [72] − 5,637 Point ✘ High ✓ Underwater object counting 5,382/192,900/35.84

OZFish [11] Foregr. 9,242 BBOX ✘ Medium ✘ Underwater fish detection 6,235/38,875/6.23
URPC [12] 4 6,626 BBOX ✘ Medium ✘ Underwater object detection 6,330/38,307/6.05

TrashCan [39] − 7,212 BBOX ✓ Medium ✘ Underwater trash detection 6,465/9,855/1.52
Trash-ICRA19 [33] − 7,668 BBOX ✓ Medium ✘ Underwater trash detection 7,307/18,822/2.58

MarineDet [35] 821 22,679 BBOX ✓ High ✓ Open-marine object detection 22,679/39,243/1.73
FishNet [45] 17,357 94,532 Cate./BBOX ✘ High ✓ Fine-grained fish classification and detection 48,659/49,774/1.02

FathomNet [44] − 109,871 BBOX ✓ High ✓ Underwater and deep-sea object detection 69,909/121,329/1.74
FishNet Open [13] 34 143,818 BBOX ✓ High ✓ Fish and non-fish detection 82,622/285,170/3.45

Total (1st source) − 284,206 Æ ✓ High ✓ Image collection of existing public datasets 284,206/881,548/3.10

HK-Reef-Fish [6] − 730 ✘ Low ✓ Fish identification 729/1,985/2.72
CoralVOS [96] − 60,456 Mask; ✓ Low ✘ Coral video segmentation 750/2,057/2.74

MVC [88] − 1,026 ✘ Medium ✘ Underwater object detection and segmentation 1,026/3,516/3.43
Sea Animal [10] 23 13,711 Category; ✘ Medium ✘ Sea animal classification 3,080/7,448/2.42
ImageNet [30] 38 43,907 Category; ✘ Low ✘ Scene classification 3,987/7,175/1.78

MVK [75] − 4,872 ✓ Medium ✘ Marine video retrieval 4,872/25,077/5.15
Oceanic Life [14] − 7,990 ✘ High ✘ Collection of Marine Life Imagery 5,029/20,811/4.14

Reef-Life-Survey [1] − 7,089 ✘ High ✓ Marine creature identification 7,075/12,502/1.77
Corals-of-world [32] − 8,217 ✘ Medium ✘ Coral reef identification 7,636/17,264/2.26

Wildfish++ [94] 2,348 103,034 Category; ✓ High ✘ Fine-grained fish classification 9,367/17,075/1.82
FishDB [82] − 10,074 ✘ Medium ✘ Fish species identification 9,905/18,914/1.91
Reeflex [2] − 15,174 ✘ High ✓ Marine creature identification 15,088/61,656/4.09

Fish-of-Australia [21] − 20,795 ✘ Medium ✓ Fish species identification 19,269/44,342/2.30
Youtube − 20,935 ✓ High ✓ Video collection 20,935/201,290/9.61
EOL [9] − 3,498,763 ✘ High ✓ Species identification 23,141/80,128/3.46

Private data − 24,420 ✓ High ✓ Surveying; Diving; Snorkeling 24,420/289,898/11.87

Total (2nd source) − 156,309 ✓ High ✓ Image collection with manual annotations 156,309/811,138/5.19

Internet images [4, 5, 7] − 35,172 ✓ High ✓ Image collection (human labeled) 35,172/194,010/5.52
Internet images [4, 5, 7] − 1,945,714 Æ ✓ High ✓ Image collection (automatic mask generation) 1.94M/17.3M/8.89

Total (3rd source) − 1,980,346 Æ; ✓ High ✓ Image collection of Internet images 1.98M/17.5M/8.84

MarineInst20M − 2,420,851 Æ; ✓ High ✓ Instance segmentation and captioning 2.42M/19.2M/7.93
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Fig. 2: We provide the example images from our MarineInst20M dataset. The images
demonstrate a remarkable image diversity. Please zoom in to see more details.

1.2 Existing Public Datasets

In our work, we propose to utilize the existing public marine/underwater datasets
with various formats of annotations (e.g., point, box, and mask) for optimizing
our MarineInst model. As mentioned in our main manuscript, we infer SAM
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Fig. 3: We provide the visualization of the composition of all the instance masks from
our MarineInst20M dataset: a) demonstrates the composition of instance masks from
three different sources; b) illustrates the composition of the instance masks from the
existing public dataset after our conversion; c) shows the composition of the instance
masks labeled by the human annotators in this work. For both b) and c), we only
visualize the top 8 components for better readability.

with the ViT-H backbone by point or box prompts to obtain the instance masks.
Furthermore, we perform the filtering to remove those generated masks with the
value of “predicted IoU” lower than 0.88. For those datasets with mask anno-
tations, we only pick up partial images with satisfactory instance mask anno-
tations, indicating that each mask only exhibits one instance. After converting
the annotations of existing public datasets to instance masks, we have obtained
around 284K images with 882K high-quality instance masks for optimizing our
model. To convince the readers, we provide the visualization of the generated
instance masks for the images from those datasets in Figure 4. As illustrated,
most of the generated instance masks are reasonable and accurate enough to
optimize our MarineInst model as the pseudo ground truth. With the training
data from various public datasets, our model could be driven to obtain a strong
performance across a variety of marine data.

1.3 Data with Manual Annotations

As for our manually labeled data, the marine images mainly come from 1) ex-
isting public datasets; 2) marine research websites (including HK-Reef-Fish [6],
Reeflex [2], Reef-Life-Survey [1], FishDB [82], Fish-of-Australia [21], Corals-of-
world [32] and EOL [9]); 3) YouTube videos; and 4) the private data contributed
by local amateurs and marine biologists from different sites. Please check Table 1
for more details.

For the images from the existing datasets [10, 14, 30, 75, 94, 95], which are
without any annotations, we manually label the images from these datasets
for obtaining the instance masks. Wildfish++ [94], Sea Animal [10], and Ima-
geNet [30] datasets only provide the category annotations. Please note that we
only adopt the images from 38 ocean-related categories for labeling on the Ima-
geNet dataset. We randomly select 9,367, 3,080, and 3,987 images from these
three datasets for instance mask labeling, respectively. The MVC [95], MVK [75],
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Fig. 4: We provide the example images with the instance mask visualizations from
the existing public datasets after our processing procedures, converting the point or
bounding box annotations to instance masks. Please zoom in to check more details.
Results shown are not cherry picked.

and CoralVOS [96] datasets only provide marine video clips. We download the
videos from these three datasets and manually from some frames for instance
mask labeling. The statistics for the number of cropped images and labeled in-
stance masks are also reported in Table 1.

As for the images from the marine research websites, we utilize our labeling
tool for instance mask annotation. Considering the EOL website [9] contains
redundant images, we only randomly pick up 23,141 images for labeling. We
have labeled nearly all the images from HK-Reef-Fish [6] (729 images labeled),
Reeflex [2] (15,088 images labeled), Reef-Life-Survey [1] (7,075 images labeled),
FishDB [82] (9,905 images labeled), Fish-of-Australia [21] (19,269 images la-
beled), Corals-of-world [32] (7,636 images labeled) websites. Among all these
images, some images are discarded or ignored due to the following reasons: 1)
the images are corrupted; 2) the visibility of the captured images is drastically
degraded; and 3) there is no biologically meaningful instance within the image.

For the videos downloaded from YouTube (around 1,000 videos with a time
duration of 1,243 hours in total), we manually or automatically crop frames from
the videos and then manually label these cropped frames. Finally, we generate
201K instance masks for 20.9K images. The private data comes from the con-
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Fig. 5: Instance mask visualization of example images from MarineInst20M dataset.
The instance masks are all labeled by human annotators.

tributions of local amateurs and biologists (domain experts) from various sites
around the world. We have finally obtained 24,420 images with 289,808 in-
stance mask annotations from these private data. Such images with annotations
are significantly valuable for optimizing a strong model to satisfy the require-
ments of the domain users. The number of instance masks of each dataset or
image source is also provided in Table 1.

Finally, we provide the visualization of the instance masks labeled by our
human annotators in Figure 5.

1.4 Public Internet Data

We adopt crowdsourcing techniques to scrape public images, which are mainly
from Flickr [4], Gettyimages [5], and Shutterstock [7]. The public images come
from many different natural underwater environments, covering marine vision
tasks such as ocean exploration, human-computer intelligence cooperation, and
underwater autopilot. To ensure the high diversity and comprehensive coverage
of the scraped public images. We construct a list of keywords for querying these
public image websites. The keywords are:

“underwater” “marine” “sea life” “fish” “sea creature”
“ocean” “marine life” “marine biology” “diving” “snorkeling”
“colorful reef creatures” “marine mammal” “coral reef” “marine biodiversity” “deep sea”
“oceanic abyss” “crustaceans” “aquatic” “microscopic sea life” “nudibranch”
“sea slug” “frogfish” “aquariums” “shark” “dolphin”
“underwater flora and fauna” “mollusca” “beach” “turtle” “sea star”
“starfish” “scallop” “sea urchin” “porifera” “anemone”
“cnidaria” “whale” “orca” “trua” “seahorse”
“sea dragon” “seaweed” “diver” “jelly fish” “seal”
“sea otter” “marine birds”

We adopt these keywords to scrape public Internet images. After collecting
redundant marine images downloaded from the public Internet, we randomly
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Fig. 6: The world cloud visualization of the top 1,000 words in all the extracted phrases
from the alt-texts of the public Internet images.

pick up partial images from whole public Internet images and perform manual
instance mask labeling: 35,172 images with 194,010 instance masks. It is worth
noting that public images from Internet websites contain some text descriptions
in the form of alt-text captions. Based on these alt-text captions, we adopt the
KeyPhraseTransformer open source1 to extract the phrases from these alt-texts.
We have also provided the statistics for the extracted phrases. There are approx-
imately 470K different phrases in total, where 24,283, 5,063, 2,490, and 508
phrases appeared over 10, 50, 100, and 500 times, respectively. Furthermore, we
provide a world cloud visualization of the top 1,000 phrases in all the extracted
phrases from the alt-texts in Figure 6. As demonstrated, the scraped public In-
ternet images have significant diversity and contain comprehensive marine object
conceptions.

Finally, we provide the instance masks generated by our MarineInst model
in Figure 7. All the images shown in Fig. Figure 7 come from the public Inter-
net. It is worth noting that all the instance masks are automatically generated
without any prompts from the users. In other words, no human intervention
is involved during the whole instance mask generation procedure. We observe
that most of the generated instance masks are reasonable and accurate enough
for further optimizing our MarineInst model. We also acknowledge that there
are still some false negatives, in which our model failed to segment under the
automatic setting.

1 https://github.com/Shivanandroy/KeyPhraseTransformer

https://github.com/Shivanandroy/KeyPhraseTransformer
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Fig. 7: Instance mask visualization of example images from MarineInst20M dataset.
The instance masks are all automatically generated by our MarineInst model
without any prompts. Results shown are not cherry picked.

1.5 Discussions

Our MarineInst20M dataset contains around 20 million instance masks with de-
tailed and comprehensive captions. Our MarineInst20M dataset could enable
semantic segmentation, instance segmentation, and object detection, either in-
dividually or in combination. Furthermore, in our MarineInst20M dataset, we
extend the marine instance segmentation to the open-vocabulary setting, where
the model is optimized to segment the objects within the image based on a
language description from humans.

Instance masks with generated instance-level semantic captions from our
MarineInst20M dataset are illustrated in Figure 8. As demonstrated, the gen-
erated instance masks with captions are reasonable, enabling a comprehensive
understanding of marine images of different semantic granularities. Thanks to
the combined architecture of automatic instance segmentation and semantic in-
stance captioning, MarineInst produces satisfactory labeling for most samples
and can provide more detailed, diverse, and comprehensive annotations. More
importantly, the semantic instance understanding has also produced a large
number of question-answer pairs: e.g., 1) single-instruction-input-single-mask-
output ; 2) single-instruction-input-multiple-mask-output ; 3) single-mask-input-
single-caption-output ; 4) multiple-mask-input-spatial-reasoning-output ; and 5)
multiple-mask-input-relationship-summarizing-output. We leave more details and
discussions of generating such pairs in Section 2.2.
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Fig. 8: Visualization of the generated instance masks with comprehensive and detailed
semantic instance captions. Please zoom in to check more details. Results shown are
not cherry picked.

2 MarineInst

2.1 Preliminaries

The instance mask generation of MarineInst is built upon SAM [47], the foun-
dation model for generic segmentation driven by the biggest SA-1B dataset for
mask prediction to date. SAM consists of three components, a prompt encoder
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Prop(·), a heavy image encoder Enc(·), and a lightweight mask decoder Dec(·).
As a promotable model, SAM is fed with an image I and a set of user prompts
P , including point, box, or coarse mask prompts. SAM utilizes Enc(·) to obtain
image embedding, and adopts Prop(·) to encode prompts P of a length k into
prompt tokens as:

FI = Enc(I), TP = Prop(P ), (1)

where FI ∈ Rh×w×c and TP ∈ Rk×c, with h,w denoting the resolution of the
image embedding and c = 256 denoting the feature dimension. FI and TP are
fed into the mask decoder Dec(·) for mask generation. SAM constructs the input
tokens of Dec(·) by concatenating the learnable mask tokens TM generated by
Dec(·) and the prompt tokens TP for generating the mask output, formulated as

M = Dec(FI , Concat(TM , TP )), (2)

where M denotes segmentation masks yielded by SAM. SAM is primarily opti-
mized by in-air images, making it less effective in segmenting mariner images.
Furthermore, SAM has a strong ability to group pixels with similar appearances
or textures together for mask generation. But in contrast, it cannot generate
instance-level masks due to its semantic-agnostic nature.

To address these issues, we propose to formulate a lightweight binary filtering
branch to enable MarineInst to discriminate whether the generated masks are
instance masks. We conduct attention-based feature interaction between mask
generation and binary instance filtering:

Lbin. = −(y log(p) + (1− y) log(1− p)), p = MLP(FI , Concat(TM , TP )), (3)

where y denotes the binary ground truth. TM and TP are the learnable mask
tokens and prompt tokens, respectively. FI is the image embedding from the
image encoder and MLP is a lightweight MLP layer. Both “positive” instance
masks and “negative” non-instance masks are used for optimizing our MarineInst.
It is worth noting that our MarineInst also inherits the ability to receive user
prompts for generating desired masks.

2.2 Implementation Details

Instance segmentation. We adopt SAM as our backbone and utilize it as an
effective network initialization. For our iterative optimization, we first continu-
ously pre-train our MarineInst model on the instance mask data from the public
existing datasets and our manual annotations (1.89M positive instance masks
in total). Both the positive instance masks and negative non-instance masks
(0.76M non-instance masks) have been utilized for optimizing our MarineInst
model. For non-instance mask generation, we randomly pick up one point in-
side the whole instance mask and infer SAM for mask generation, where we
only preserve the masks with predicted IoU over 0.88. We regard the gener-
ated mask as non-instance if the overlapping between the generated mask and
the original instance mask is below 0.5. We provide the detailed procedures for
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Fig. 9: Details procedures constructing negative masks based on positive instance
masks and visualizations of both positive instance masks and negative non-instance
masks.

constructing the negative masks in Figure 9. To provide a better illustration,
we have also provided the visualization images of both positive instance masks
and negative non-instance masks in Figure 9. In total, there are 2.65M masks
(positive and negative) used for optimization. At this stage, we keep the heavy
encoder frozen and only optimize the prompt encoder and mask decoder. The
training prompt is only the point prompt (three random points inside the whole
mask). After optimizing MarineInst (ViT-H backbone) for 3 epochs, we utilize
the trained model for generating instance masks for those public Internet images.
During the automatic instance mask generation procedure, we follow the auto-
matic mask generation pipeline of SAM and generate the grid points (32×32) as
point prompts for automatic instance mask generation. The IoU threshold and
stability threshold are set to 0.82 to remove the automatically generated low-
quality instance masks. Please note that the automatically non-instance masks
(11.7M non-instance masks) have also been preserved for further optimizing
our MarineInst model.

Then the whole model is continuously pre-trained on our MarineInst20M
dataset (with 19.2M instance masks and 11.7M non-instance masks) to bet-
ter extract efficient marine feature representations. Please note that the whole
model, including the heavy image encoder, prompt encoder, and mask decoder,
has been optimized on our MarineInst20M dataset. The training prompt is a
combination of both point and box prompts. We have optimized our MarineInst
on MarineInst20M dataset for 3 epochs. To promote the generalization ability
and robustness of our trained foundation model, we apply various augmenta-
tion techniques to increase our training data. Besides the color jitter adopted
in SAM, we also conduct random cropping, rotation, enlarging, and flipping to
simulate the high diversity of marine images. We perform experiments on 8 H800
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Single mask Multiple masks with mask IDs

Fig. 10: Two settings of instruction-following instance understanding: 1) single mask
and 2) multiple masks with mask IDs.

GPUs and set the batch size per GPU to 1. We resize the original images to the
required size and set the longest side of the resized image to 1024 while keeping
the original image ratio. It takes 1,056, 1,392, and 2,064 GPU hours to optimize
the MarineInst model with ViT-B, ViT-L, and ViT-H backbones, respectively.
Instance captioning. For semantic caption generation for the instance mask,
we first crop image regions from the whole image based on the generated instance
masks and then feed the cropped images to the frozen VLM. we adopt the
frozen MarineGPT [89] to include a ViT backbone with a pre-trained Q-Former
and Vicuna-V0 [28] (tuned from LLaMA-13B [74]) as the decoder to generate
responses. It is worth noting that we adopt the pre-trained model at the first
stage. The value for beam search is set to 0.1 and the maximum length of the
generated tokens for the cropped images is 50. The input size of the fed images
is set to 224× 224.

We formulate mask-caption pairs (m, θ) to enable instruction-following tasks:
(a) instruction-following instance understanding and (b) instruction-following
segmentation. For instance understanding, the mapping m → θ is described by
“Human: The image is <image>. Please generate caption for instance <mask>:
m. Response: θ”, where <image> and <mask> are image and mask tokens, re-
spectively. For instruction-following segmentation, the mapping θ → m performs
segmentation following user intents (discussed in supplementary). We optimize
MarineInst with the constructed instruction-following data and enable Marine-
Inst to handle various tasks aligned with user intents.
Instruction-following instance understanding. We construct the pair of
instance masks and the generated semantic captions to optimize our model. We
adopt MarineGPT [89] as our baseline and we fine-tune the released pre-trained
models to our instruction-following instance understanding tasks. Following the
experimental setting of [89], we optimize both the Q-Former and linear layer
parts of the whole model. There are two settings for this instruction-following
instance understanding task: 1) single mask and 2) multiple masks with randomly
assigned mask IDs as demonstrated in Figure 10.



14 Z. Zheng et al .

As for the instruction construction, we only choose one simple instruction for
the former single mask setting:

– The image is <image>. Please describe the object in the mask.

For the latter multiple masks setting: we formulate the following 4 different
instructions.

– The image is <image>. Please generate the caption for the instance mask
m with mask ID <mask ID>.

– The image is <image>. Please describe what the object is doing in the
instance mask m with mask ID <mask ID>.

– The image is <image>. Please explain the relationship between the object
in the instance mask m with mask ID <mask ID> and the background
environments.

– The image is <image>. Please explain the relationship between the object
in the instance mask m with mask ID <mask ID> and the object in the
instance mask m with mask ID <mask ID>.

Under the two settings, we have formulated 307,272 and 338,650 instruction-
following training data for the single mask and multiple masks settings, respec-
tively. The batch size is set to 4 and the number of total steps in an epoch is
10,000. We perform experiments on 4 Tesla A40 GPUs and optimize our Marine-
Inst by 4 epochs. The image size is set to 384×384 during the tuning procedure.
Instruction-following segmentation. Our MarineInst could also be utilized
for instruction-following segmentation, generating required instance masks based
on the user instructions. We follow the data preparation of LISA [48] to generate
the instruction-following training data. We formulate the instruction as follows:
Human: The image is <image>. Please generate the mask with <caption> for
me. Response: <SEG>. <caption> and <SEG> are the generated semantic cap-
tions and corresponding mask annotations generated by our MarineInst, respec-
tively. We construct 307,272 instruction-following training data for tuning our
MarineInst to perform segmentation based on user instructions. The batch size
is set to 4 and the number of total steps in an epoch is 10,000. We perform
experiments on 4 Tesla A40 GPUs and optimize our MarineInst by 4 epochs.
Please note that the “instruction-following segmentation” could be regarded as
the reverse procedure of “instruction-following instance understanding” (single
mask setting).
User studies. We perform user studies to evaluate the accuracy of the generated
semantics of the four different algorithms: SSA [23], OVSAM [84], MarineInst
(BLIP2 [50]) and MarineInst (MarineGPT [89]). We randomly pick up 1,000
mask-caption pairs generated by these four algorithms each. Please note that
we first randomly choose 1,000 generated instance masks from the whole pool.
Then BLIP2 and MarineGPT have been utilized for generating the semantic cap-
tions. For BLIP2, we adopt the pre-trained model “blip2-opt-6.7b” with the LLM
“OPT-6.7B”. MarineGPT is based on the Vicuna-V0 [28] (tuned from LLaMA-
13B [74]). It is worth noting that the input for BLIP2 and MarineGPT are the
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Table 2: The underwater salient object segmentation results on the USOD10K
dataset [40]. “Depth” (“Edge”) indicates that the depth map (edge map) of the original
RGB images has been utilized for optimization as the additional clues.

Method Additional clues Sm ↑ Emax
ϵ ↑ maxF ↑ MAE ↓

SVAM-Net [42] None 0.7465 .7649 0.6451 0.0915
CTDNet [87] Edge 0.9085 0.9531 0.9073 0.0285
CDINet [85] Depth 0.7049 0.8644 0.7362 0.0904

SGL-KRN [80] Depth & Edge 0.9214 0.9633 0.9245 0.0237
TC-USOD [40] Depth & Edge 0.9215 0.9683 0.9236 0.0201

MarineInst None 0.9103 0.9411 0.8876 0.0256

same. As for OVSAM, we regard the BBOX of the generated instance masks as
the box prompt to generate mask prediction with semantic category annotation.
Similarly, we infer SSA with the same box prompts to generate masks with se-
mantics. For subject fidelity, we asked 3 students from the marine biology field
to answer 1,000 scoring questions, totaling 12,000 (4 × 3 × 1000) answers. The
students are asked to answer the question: “Please give your satisfactory score
(from 1 to 5) based on the correctness, helpfulness, and information richness of
generated captions for the instance mask”. Then we compute the average satis-
factory score for each algorithm. The higher satisfactory score indicates a higher
accuracy of the generated semantic captions for the instance masks.

Comparisons. In this work, we mainly include SAM [47], Semantic-SAM [49],
SSA [23], OVSAM [84] and Grounded SAM [69] for comparison. Both SAM and
MarineInst could be inferred under the automatic, point prompt based, and box
prompt based settings. Under the automatic setting, SAM and MarineInst auto-
matically generate masks based on 32× 32 grid points. Semantic-SAM produces
instance masks by setting the semantic granularity to 3. SSA is based on SAM
so we do not compute the quantitative results of the instance segmentation for
SSA. We adopt the predicted IoU score as the confidence score when evaluating
the instance segmentation performance. For evaluating OVSAM, we adopt its of-
ficial configuration with “sam_r50x16_fpn” as the network backbone, where the
IoU branch has been discarded due to knowledge distillation. Thus, we choose
the confidence score for category prediction as the confidence score for evaluat-
ing the instance segmentation performance. For Grounded SAM, we first utilize
Grounding DINO [58] to yield the bounding box predictions based on the text
query. We preserve the predictions with a similarity score over 0.25 as suggested
in Grounding DINO. Then the box predictions are regarded as box prompts to
generate dense instance masks.
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Table 3: We report the quantitative object detection results of MarineDet and
MarineInst-Det on URPC [12] dataset. “MarineInst20M (human-annotated)” indi-
cates that we only utilize the bounding box annotations from the human-annotated in-
stance masks (converted from existing public datasets and manual annotations) for pre-
training. “MarineInst20M (human-annotated+model-generated)” indicates that
bounding box annotations from all the instance masks in our MarineInst20M dataset
have been used for pre-training.

Method Pre-training data Sea urchin Scollop Starfish Sea cucumber mAP50

MarineDet [35] MarineDet dataset 86.4 83.8 45.8 66.6 70.6

MarineInst-Det MarineInst20M
(human-annotated) 89.5+3.1 86.6+2.8 60.2+14.4 69.4+2.8 76.4+5.8

MarineInst-Det MarineInst20M
(human-annotated+model-generated) 90.2+3.8 87.7+3.9 63.2+17.4 70.6+4.0 77.9+7.3

3 More Experiments

3.1 Underwater Salient Object Segmentation

With pre-trained on huge instance masks from the redundant marine images, our
MarineInst model could then be fine-tuned to perform underwater salient object
segmentation. We present the qualitative results of our MarineInst model on
the USOD10K dataset and more quantitative result comparisons with existing
state-of-the-art algorithms in Table 2. Please note that we only utilize the height
and width of the input images as the box prompt to yield the salient predictions.
Our model is optimized without the supervision of the additional depth maps
and the edge maps, which require additional pre-processing procedures to obtain
side clues and are not easy to obtain for wide underwater scenarios. Our method
could achieve comparable performance with CTDNet [87], which utilizes edge
information as the additional supervision. When compared with SVAM-Net [42]
under the same experimental setting without any additional clues, our Marine-
Inst could achieve much better results.

3.2 Underwater Object Detection

Since our MarineInst20M dataset has large-scale instance masks, we could eas-
ily obtain the bounding box annotations for various marine objects. With such
redundant BBOX annotations for a wide spectrum of marine objects, we aim to
optimize a powerful region proposal network (RPN) model. We follow the ex-
perimental setting of MarineDet [35] and utilize the bounding box annotations
of our MarineInst20M dataset to pre-train a powerful detection model (denoted
as MarineInst-Det). We adopt the RegionCLIP [90] as our baseline and con-
tinuously pre-train the model with ResNet-50 backbone on our MarineInst20M
dataset. Then we fine-tune our pre-trained model to the downstream URPC
dataset [12]. The quantitative object detection results of our MarineInst-Det and
existing MarineDet are in Table 3. We conduct our MarineInst-Det pre-training
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under two settings: 1) human-annotated: only the bounding box annotations
from the converted instance masks and our manually labeled instance masks
have been utilized for pre-training; 2) human-annotated+model-generated:
the bounding box annotations from all the instance masks have been used for
pre-training, including the converted instance masks, manually labeled instance
masks, and model-generated instance masks. As reported, our model outper-
forms the existing MarineDet by a large margin. We attribute such observable
performance gains to our huge pre-training data. Meanwhile, we also observe
that the model-generated instance masks could also promote the downstream
fine-tuning performance (77.9 vs. 76.4) due to more training data involved. This
observation also demonstrates that the model-generated instance masks can fur-
ther promote marine object detection, indicating reasonable instance mask gen-
eration to some extent. MarineInst-Det has a stronger ability to extract efficient
and effective features from visual images, even under some challenging condi-
tions. Our MarineInst20M dataset and pre-trained object detection model will
be a significant contribution to effective and efficient object detection in the
marine field.

3.3 Text-to-Image Synthesis

Marine text-to-image synthesis is a cutting-edge technology with various appli-
cations in marine science, research, and education. It combines natural language
descriptions with advanced image generation techniques [63, 70] to create vivid
and realistic visual representations of underwater environments and marine life.
To demonstrate that our MarineInst20M dataset could promote the marine text-
to-image synthesis. We fine-tune the “stable-diffusion-v1-5” (SD1.5 for short)
model based on the training data, where we construct 2M image-text pairs: 1M
pairs are from the public Internet images with alt-text captions and another 1M
pairs are from the cropped images with the model generated instance captions.
For the latter 1M pairs, we crop the images based on the instance masks, and
the area of the cropped images is required to be larger than 256 × 256. The
cropped close-up images provide valuable guidance for synthesizing reasonable
marine creatures. We fine-tune the pre-trained stable diffusion model based on
our training data for 10,000 steps and the batch size is set to 192. We provide
some example results in Figure 11 under two settings: 1) without fine-tuning
(original pre-trained frozen model) and 2) with fine-tuning. To help the readers
better compare the image synthesis results, we have also provided the reference
images (real images) for each required marine species. Please note that we fed
the pre-trained model and our fine-tuned model with the same text prompts
generated by ChatGPT. As illustrated in Figure 11, further fine-tuning on our
MarineInst20M dataset could lead to much better image synthesis, which aligns
the text prompts better. Our trained model has a stronger ability to synthe-
size more reasonable images, which comply with physical and biological laws.
We attribute this improvement to the knowledge injection driven by our high-
quality text-instance pairs. Finally, to quantitatively measure the text-to-image
synthesis performance, we compute the FID [38] scores (lower is better) between
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Fig. 11: We report the marine text-to-image synthesis results under two settings: a)
without fine-tuning and b) with fine-tuning on our MarineInst20M dataset. The refer-
ence images from the required marine species have also been provided for the readers to
better compare the synthesis performance. Best viewed in color. Results shown are
not cherry picked.

10,000 synthesized marine images (from vanilla and fine-tuned SD1.5 model,
respectively) and aligned real images (we adopt the text captions of the real im-
ages as the text prompts for generating the marine images). The vanilla SD1.5
achieves 25.91 while our fine-tuned counterpart could obtain 19.22 in terms of
FID metric.

3.4 Instruction-following Instance Understanding

We have also quantitatively evaluated the ability of MarineInst to perform the
instruction-following instance understanding. We first construct 1,000 testing
images and corresponding human-constructed reference captions (describing ap-
pearance, pose, activity, event, and other attributes) for instance understanding.
The average word length of reference captions is 44.21 for instruction-following
instance understanding. The instruction is “Describe the object in mask ”. We use
widely used captioning metrics2 to compute scores between model-generated re-
sponses/captions and reference captions, comparing with general-purpose MiniGPT-
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Table 4: We report the quantitative results of instruction-following instance under-
standing. The generic MiniGPT-4 and the domain-specific MarineGPT are included
for comparison.

Methods CIDEr [76]↑ METEOR [17]↑ BLEU-4 [61]↑ CLIP-S [37]↑ RefCLIP-S [37]↑

MiniGPT-4 [93] 13.18 12.19 6.10 73.82 71.27
MarineGPT [89] 16.78 13.00 6.78 74.60 71.89

MarineInst 25.06 15.77 9.51 75.71 76.01

Table 5: We report the quantitative results of marine image storytelling. The generic
MiniGPT-4 and the domain-specific MarineGPT are included for comparison.

Methods CIDEr [76]↑ METEOR [17]↑ BLEU-4 [61]↑ CLIP-S [37]↑ RefCLIP-S [37]↑

MiniGPT-4 [93] 18.43 13.39 7.05 74.42 71.53
MarineGPT [89] 27.19 16.32 9.74 75.08 75.68

MarineInst 30.43 17.06 10.76 76.47 76.41

4 and domain-specific MarineGPT. The quantitative results are reported in Ta-
ble 4. As observed, MiniGPT-4 and MarineGPT suffer from a weaker ability to
understand specified instances compared with our MarineInst due to the two
models were not optimized by instance-level supervision.

3.5 Image Storytelling

A picture is said to be worth a thousand words, conveying complicated concep-
tions and relationships between objects. Marine image storytelling could bring a
deeper understanding of the marine realm to both scientists and the general pub-
lic. It enables the automatic generation of descriptive and informative captions
for marine images, allowing researchers to annotate vast datasets efficiently. Fur-
thermore, marine enthusiasts and amateurs can gain valuable insights into the
intricate marine world beneath the waves by receiving detailed explanations and
context for the visuals they encounter. Considering our MarineInst could gener-
ate comprehensive and meaningful semantic instance captions for each instance
mask. We ask ChatGPT-3.5 to generate a summary of all the generated seman-
tic instance captions for the instance masks within the images for performing
image storytelling. The merged caption is regarded as the image-level caption
for the whole image. In this way, we could perform more fine-grained image-
level captioning and understanding. We provide some examples in Figure 12.
GPT-4V is included for comparison. The effective and detailed marine image
captioning based on our MarineInst could enrich the connection with the ocean
and its myriad inhabitants, making it a labeling tool in marine exploration and
communication.

Similarly, we perform the evaluation of the marine image storytelling. Fol-
lowing the same evaluation pipeline as the instruction-following instance un-
2 https://github.com/jmhessel/clipscore

https://github.com/jmhessel/clipscore
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This image juxtaposes two formidable vessels, 
each serving a unique purpose on the vast expanse 
of the sea. The first is a large, red and white 
deep-sea scientific research vessel, its open hull 
indicative of its exploratory mission. Equipped 
with two large cranes on the back deck and a 
substantial scientific instrument atop, it is the 
epitome of human ingenuity in the quest for 
oceanographic knowledge. Nearby, a large tanker 
ship asserts its presence with a robust hull 
designed for endurance and capacity, its deck 
crowned by several towering masts that speak to 
its commercial navigational prowess. Together, 
these ships represent the diverse nature of 
maritime endeavors, from the pursuit of scientific 
discovery to the necessities of global commerce.

This image reveals the rich tapestry of marine 
biodiversity, where a black sea urchin rests 
unassumingly on the coral reef floor. Encircled by 
an array of small rocks and teeming with various 
sea life, the urchin's spiny appearance adds texture 
and depth to the underwater landscape. Sharing 
this aquatic realm, an octopus with a captivating 
pattern of brown and white stripes stretches 
out across the seabed. Its two large, watchful 
eyes and all eight legs splayed outwards, the 
octopus is an embodiment of the adaptability and 
complexity of oceanic creatures, each contributing 
to the dynamic ecosystem of the reef.

This captivating image showcases a vibrant 
underwater scene, featuring an octopus with a 
brown body, casually perched on the diverse 
ecosystem of a coral reef. The octopus, possibly a 
common octopus (Octopus vulgaris), displays its 
eight arms adorned with suction cups, essential for 
navigation and hunting on the reef. Amidst this 
marine spectacle is a striking coral, characterized 
by its pink and white hues, round shape, and surface 
dotted with small holes, contributing to the reef's 
complexity. The coral reef itself is a tapestry of life, 
composed of variously colored corals with 
distinctive brown and white stripes, and an 
assortment of sponges, some small and compact, 
others large with conspicuous openings. The white, 
soft, and squishy textures emerging from the 
corals add a three-dimensional aspect to the scene, 
while the background is peppered with rocks.

In this enchanting underwater snapshot, two 
distinct fish are depicted in an aquarium 
setting, each illuminated by a tranquil blue light. 
The first is a striking black and white striped 
fish, notable for its elongated, flowing tail, 
elegantly swimming through the clear blue waters. 
Complementing this is another sizable fish, 
captured in the same serene environment, its form 
highlighted by the blue lighting that reveals a 
pointed nose and a lengthy tail, suggesting a 
sense of graceful motion within the aquatic space. 
Together, these fish, each with their own unique 
features and illuminated by a calming blue glow, 
embody the dynamic and diverse life that thrives 
beneath the surface.

The image captures an octopus in its natural 
habitat on a vibrant coral reef. The octopus has a 
mottled brown and tan body, blending seamlessly 
with its surroundings, which is indicative of its 
camouflage capabilities. Its eight arms, covered in 
suckers, are sprawled across the reef, allowing it 
to anchor and maneuver with ease. The creature's 
large, prominent eyes are fixated in the direction 
of the camera, giving it a seemingly aware and 
intelligent expression. The ocean floor is a collage 
of marine life, including various corals, sponges, 
and small fish, creating a dynamic and biodiverse 
ecosystem. The image, credited to David Comas 
2019, offers a glimpse into the rich and complex 
world that thrives beneath the ocean's surface.

The image depicts a maritime scene with two 
ships on a calm sea under an overcast sky. In the 
foreground, a large red and white vessel, likely a 
deep-sea scientific research ship, is equipped 
with cranes and various instruments, indicating its 
purpose for oceanographic exploration. Its open 
deck and the configuration suggest active work or 
the capability to perform complex tasks at sea. In 
the background, another ship, possibly a 
commercial cargo vessel or tanker due to its 
size and structure, is visible through a misty 
haze, emphasizing the depth of the scene. The 
tranquil water and subdued lighting convey a 
serene oceanic ambiance.

The photograph captures an octopus nestled 
amongst coral, displaying its remarkable 
camouflage skills. The octopus has a textured skin 
that mirrors the multifaceted surface of the 
surrounding coral, with shades of brown and tan 
that blend into the underwater landscape. Its body 
is contoured to the shape of the coral it rests upon, 
illustrating its ability to adapt its posture to diverse 
environments. Suckers are visible along its 
tentacles, hinting at its capacity for tactile 
sensation and grip. In the background, we see a 
contrast between the rough textures of the nearby 
coral and the smooth, distant forms of coral 
structures, creating a layered perspective of the 
reef habitat. This scene is a testament to the 
octopus's mastery of disguise and the dynamic 
biodiversity of coral reef ecosystems.

The image captures a single fish with striking 
black and white stripes, navigating the tranquil 
blue waters of its aquatic environment. The fish's 
fins are well-spread, indicating either a state of 
gliding or active swimming. Its body shape is 
angular and laterally compressed, typical of many 
tropical fish species found in coral reefs, which 
aids in quick maneuvering through complex 
underwater structures. The eyes of the fish are 
large and prominent, suggesting a high visual 
acuity for detecting predators or prey. The overall 
composition, with the contrasting colors of the 
fish against the deep blue background, creates a 
vivid and dynamic marine scene.

Semantic instance captions MarineInst+GPT-3.5 GPT-4V

Fig. 12: We optimize our MarineInst to generate comprehensive and detailed semantic
instance captions for each generated instance mask. Then we utilize ChatGPT-3.5 to
generate the merged caption as the image-level caption based on the generated instance
captions. GPT-4V is included for comparison, where texts in green are correct responses
and red are wrong responses.

derstanding, we first construct 1,000 testing images and corresponding human-
constructed reference captions (describing appearance, pose, activity, event, and
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Fig. 13: We compare our MarineInst with Grounded SAM for instruction-following
segmentation. The generated bounding boxes from Grounding DINO and correspond-
ing confidence scores have also been provided for better illustration.

other attributes) for the whole marine image. The average word length of ref-
erence captions is 53.78. The general-purpose MiniGPT-4 and domain-specific
MarineGPT were included for comparison. The quantitative results are reported
in Table 5. Through combining the semantic instance captions yielded by Marine-
Inst, we could generate comprehensive image captioning and achieved better
image storytelling performance than MiniGPT-4 and MarineGPT.

3.6 Instruction-following Segmentation

Instruction-following segmentation is a powerful technique that combines the
precision of segmentation with the guidance of instructions from humans. In-
terpreting textual commands allows computer vision systems to identify and
segment the specific objects or regions of interest within an image accurately.
It also enables the extraction of precise anatomical structures indicated by ma-
rine professionals, aiding in species identification and environmental monitoring
for marine research. In this work, MarineInst facilitates more sophisticated ca-
pabilities by allowing the model to understand and delineate the specific ele-
ments within the visual field. The concurrent Grounded SAM [69] (Grounding
DINO [58] + SAM [47]) could also generate the desired mask based on the text
queries. Grounded SAM is first asked to generate the bounding box based on
the text prompt and then the generated bounding boxes from Grounding DINO
are regarded as box prompts for SAM to generate instance masks with seman-
tics. The semantics of Grounded SAM inherit the text prompts from users. We
provide the qualitative comparison between Grounded SAM and our MarineInst
in Figure 13. The object detection results of Grounding DINO have also been
provided. Grounding DINO could generate reasonable object detection results
for the “barracuda” and “eel”, but produces false positives for the “manta ray”.
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Table 6: Instance segmentation results of various algorithms under settings: “ A ” -
Automatic; “⋆” - Point; “ ” - BBOX. SAM-F: fine-tuned SAM on our MarineInst20M
dataset. − indicates that the results cannot be computed.

Method binary instance
filtering

human-annotated
instance masks

model-generated
instance masks

AP ↑ APs ↑ APm ↑ APl ↑
bbox segm bbox segm bbox segm bbox segm

SAM A [47] ✘ ✘ ✘ 5.9 5.8 0.3 0.4 3.2 3.5 15.2 14.7

SAM-F A ✘ ✓ ✘ 23.0+17.1 24.8+19.0 5.9+5.6 6.8+6.4 22.2+19.0 25.5+22.0 33.3+18.1 33.7+19.0

MarineInst A ✓ ✓ ✘ 28.2+22.3 30.1+24.3 7.2+6.9 8.3+7.9 29.9+26.7 33.4+29.9 37.0+21.8 37.7+23.0

SAM-F A ✘ ✓ ✓ 24.0+18.1 25.8+20.0 6.0+5.7 7.0+6.6 22.7+19.5 26.0+22.5 34.8+19.6 35.4+20.7

MarineInst A ✓ ✓ ✓ 30.8+24.9 32.7+26.9 7.6+7.3 8.8+8.4 32.1+28.9 35.5+32.0 40.2+25.0 40.8+26.1

SAM⋆ [47] ✘ ✘ ✘ 59.0 63.0 64.3 77.8 70.2 77.3 48.5 47.4

SAM-F⋆ ✘ ✓ ✘ 67.9+8.9 70.7+7.7 71.2+6.9 81.2+3.4 78.7+8.5 83.8+6.5 57.8+9.3 56.8+9.4

MarineInst⋆ ✓ ✓ ✘ 69.9+10.9 72.5+9.5 74.2+9.9 84.1+6.3 79.7+9.5 84.7+7.4 60.5+12.0 59.2+11.8

SAM-F⋆ ✘ ✓ ✓ 71.6+12.6 74.2+11.2 73.8+9.5 83.9+6.1 81.3+11.1 85.9+8.6 62.8+14.3 61.9+14.5

MarineInst⋆ ✓ ✓ ✓ 73.1+14.1 75.4+12.4 77.5+13.2 86.6+8.8 82.5+12.3 86.7+9.4 64.1+15.6 62.8+15.4

SAM [47] ✘ ✘ ✘ − 93.5 − 95.3 − 95.7 − 92.2

SAM-F ✘ ✓ ✘ − 94.6+1.1 − 95.8+0.5 − 96.3+0.6 − 93.4+1.2

MarineInst ✓ ✓ ✘ − 94.8+1.3 − 96.1+0.8 − 96.3+0.6 − 93.8+1.6

SAM-F ✘ ✓ ✓ − 95.1+1.6 − 96.0+0.7 − 96.8+1.1 − 93.9+1.7

MarineInst ✓ ✓ ✓ − 95.4+1.9 − 96.4+1.1 − 97.3+1.6 − 93.8+1.6

Meanwhile, even with reasonable object detection results, SAM cannot always
obtain precise instance mask predictions (refer to the “eel” case). Grounded SAM
still struggles with error accumulation, where the false positive issues cannot be
addressed in Grounded SAM. In contrast, MarineInst could generate reasonable
mask outputs, which align the user instructions well. Furthermore, we provide
a quantitative comparison with Grounded SAM based on our constructed 1,000
instruction-mask testing pairs. We adopt the IoU (binary segmentation: fore-
ground object instances and backgrounds) as the evaluation metric. Grounded
SAM achieved 23.32 while MarineInst got 39.65 in terms of IoU score. Marine-
Inst demonstrates a stronger ability to understand the text prompts and rec-
ognize the described marine creatures. Finally, MarineInst is performing the
instruction-following segmentation in an end-to-end manner. Our MarineInst,
with its fusion of language and vision, paves the way for more efficient and
versatile computer vision systems across various applications.

3.7 Ablation Studies

In this section, we aim to provide more analysis of the ablation studies, evaluating
the effectiveness of the binary instance filtering and the model-generated anno-
tations. The quantitative results are reported in Table 6. We directly fine-tune
SAM (denoted as SAM-F) on our MarineInst20M as a comparison. Two experi-
mental settings are designed: 1) human-annotated: only the human-annotated
instance masks (1.89M instance masks) are used for training and 2) human-
annotated+model-generated: both human-annotated and model-generated
instance masks are used for fine-tuning. Please note that we also utilize the non-
instance masks (0.76M non-instance masks under the “human-annotated”
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Table 7: Quantitative comparisons between Mask R-CNN [36] and MarineInst on the
UIIS dataset.

Methods mAP↑ AP50↑

Mask R-CNN [36] 23.3 40.8
MarineInst 26.6 43.4

setting and 11.7M non-instance masks under the “human-annotated+model-
generated” setting) for optimizing MarineInst with the binary instance filter-
ing. As illustrated in Table 6, fine-tuning SAM (SAM-F) on our MarineInst20M
dataset with redundant instance masks could lead to observable performance
gains under all the settings. Furthermore, with the proposed binary instance
filtering, our MarineInst could achieve better performance gains than SAM-F
by effectively alleviating the over-segmentation and partial-segmentation. Es-
pecially, MarineInst has achieved larger performance improvements over SAM-
F under the automatic setting. Meanwhile, with the non-instance masks to-
gether, the ability of MarineInst to generate precise masks with point or box
prompts could also be slightly promoted. By comparing the performance under
the “human-annotated” and “human-annotated+model-generated” set-
tings, we conclude that the model-generated instance masks are also valuable
in promoting the zero-shot instance segmentation ability, leading to a stronger
marine foundation model for instance segmentation.

3.8 Comparison with Mask R-CNN

The traditional Mask R-CNN [36] could also perform effective instance segmen-
tation. We provide additional analysis and comparison between Mask R-CNN
and MarineInst to explore the effectiveness driven by large-scale datasets and
powerful foundation models. We compare Mask R-CNN on the UIIS dataset
by customizing MarineInst to fixed-category instance segmentation by extend-
ing binary instance filtering to multiple category classification. We continuously
fine-tune MarineInst on the UIIS dataset with the instance masks with semantic
category annotations. Following the experimental setting of [53], we report the
experimental results in Table 7. The results confirm that our method outper-
forms Mask R-CNN. We attribute the performance improvement to the redun-
dant mask annotations during the pre-training procedure and a more powerful
network backbone. MarineInst demonstrates a stronger ability to perform precise
instance segmentation.

3.9 More Results

In this section, we present more qualitative results as follows:
Comparison with SOTAs. Figure 14 illustrates more result comparisons be-
tween our MarineInst and existing SOTA algorithms. As illustrated, our Marine-
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Inst could generate reliable and accurate instance masks with comprehensive and
detailed semantic descriptions.
Head-to-head comparison with SAM. Figure 15 shows more automatic in-
stance mask generation performance of our MarineInst on marine images. SAM
is included for head-to-head comparison. As demonstrated in Figure 15, Marine-
Inst could effectively alleviate the over-segmentation and partial-segmentation
issues, leading to more effective instance segmentation.
Instruction-following instance understanding. Figure 16 presents more
results of MarineInst on the instruction-following instance understanding task.
We present the results under both settings: 1) single mask and 2) multiple masks
with assigned mask IDs.
Hallucination. Figure 17 reports the failure cases (hallucination) of our Marine-
Inst on generating semantic captions for the instance mask. The generated in-
stance captions may not reflect the content of the image due to the hallucina-
tions. Our studies indicate that the instance mask based image croppings cannot
guarantee a satisfactory performance when there are multiple instances crowded
within the same image cropping. Furthermore, the VLM also tends to describe
the foreground objects rather than the background environments. We believe
that further instruction-following instance understanding could help alleviate
such hallucinations.

4 Discussions

4.1 Failure Cases and Generalization Ability

Failure cases. There are still some failure cases in MarineInst. MarineInst strug-
gles with crowded scenes (e.g ., a school of tiny fish, making it difficult to define
the separated instances); and the objects in the shadow and with low visibility
and self-occlusions. We illustrate some failure cases in Figure 18(a).
Generalization ability to terrestrial images in Figure 18(b). We evaluate
whether MarineInst could generate accurate instance masks for the terrestrial
images (no overlapping with our MarineInst20M). As illustrated, MarineInst has
demonstrated a satisfactory generalization ability to the animals on land, gener-
ating precise instance masks by learning some shared common sense knowledge.

4.2 Contribution Claim

To the best of the knowledge of the authors, our MarineInst is the first attempt
to automatically generate instance masks with detailed and comprehensive se-
mantic instance captions, describing the appearance, textures, pose, activity, and
other attributes of the instance. The formulated instance visual description is a
pioneering attempt toward dense instance understanding within the images. We
utilize the powerful VLMs for more detailed and comprehensive captions and
harness the power of the LLM. The generated captions are not limited to pro-
viding the category-level semantics, but also the semantic understanding from
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Fig. 14: Comparison between MarineInst and the existing SOTA algorithms. Both
SAM and MarineInst generate masks based on automatically generated grid points.
SSA yields semantic predictions based on the automatically generated masks by SAM.
We set the semantic granularities of Semantic-SAM to 3. OVSAM is inferred by the box
prompts. Please zoom in to see more details. Results shown are not cherry picked.

various semantic granularities. The generated instance masks could be utilized
for marine species identification, object counting, coverage estimation, species in-
teraction, and robotics applications to name a few. Our MarineInst emphasizes
both the data and modeling approaches: we assemble the largest pre-training
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Fig. 15: Head-to-head comparison between SAM and MarineInst on instance mask
generation. The ⋆ indicates the automatically generated grid point prompts. SAM
suffers from over-segmentation and partial-segmentation issues, generating redundant
meaningless masks. MarineInst demonstrates a stronger ability than SAM on instance
mask generation. Results shown are not cherry picked.

dataset for marine visual analysis, as well as propose a powerful and flexible
marine foundation model. Our dataset and foundation model vastly improve the
monitoring and study of marine ecosystems. Our data collection strategies and
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Describe the object in mask:
This mask appears to show a pink fish swimming in the 
ocean.

Describe the object in mask:
This is a mask of a clown fish in ocean. It is an orange and 
white fish swimming in a blue and green ocean.

Describe the object in mask:
This mask shows a group of dolphins swimming in the 
water.  They are all swimming in a straight line and they are 
all facing the same direction.

Describe the object in mask:
This mask shows a small yellow fish swimming in the blue 
water. It is a small fish with green and yellow coloration. 
The fish has a yellow body and green fins 

Describe the object in mask ID “000”:
This mask shows a shark swimming in the blue ocean. The 
mouth of the shark is open.

Describe the relationship between object in mask with ID 
“000” and “001”:
The mask with mask ID 000 is a shark. It is swimming in the 
blue ocean. The mask with mask ID 001 shows a small fish. 
The fish is swimming near to the shark.

Describe the object in mask ID “001”:
This mask shows a vibrant coral reef.

Describe the relationship between object in mask with ID 
“000” and the background environment:
The mask with mask ID 000 is a blue spotted stingray 
swimming on the ocean floor near some rocks. It has a 
blue body with white spots.

Describe the object in mask ID “000”:
This mask shows an octopus with a captivating pattern of 
brown. It is sitting on top of a coral reefs.

Describe the object in mask ID “000”:
This object in this mask shows a manta ray swimming in 
the blue ocean.

Describe the object in mask ID “001” and “002”:
This object in the mask with mask ID 001 is a stingray. It is 
swimming towards the camera direction. The object in 
mask with mask ID 002 is a small fish. The fish is 
swimming in the water.

Describe the relationship between object in mask ID “000” 
and “001”:
This object in the mask with mask ID 001 appears to be a 
mask of a coral reef. The object in mask with mask ID 002 
is an octopus. It appears to be holding something in its 
mouth. There are some other creatures in the background.
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Fig. 16: The instruction-following instance understanding results of MarineInst under
two settings: 1) single mask and 2) multiple masks with assigned mask IDs. The texts
in green are correct responses and the texts in red are wrong responses.

Should be sea fan rather than fish 
in this mask

Only one humpback 
whale in this mask

Only one crab in 
this mask

One sea lion rather
than a group in this mask

Fig. 17: There are still some hallucinations in the generated semantic captions for the
instance mask. Best viewed in color.

model design could also be extended to other domains as well, providing valuable
insights for the computer vision community.

In this work, we do not propose specially designed model modifications to ex-
plicitly address the intrinsic challenges of marine images (e.g ., low visibility [60]
and color distortion [15]). In contrast, we aim to alleviate the data distribution
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Tiny fish

Shoal of fish Low visibility and crowded 

Self-occlussion

Monkey

Giraffe Tiger

Elephant

(a)	failure	cases (b)	generaliza1on	ability

SAM SAM

SAM SAM

Fig. 18: (a) Our failure cases. (b) Generalization ability of MarineInst to terrestrial
images. The bottom-right inline image shows results from SAM.

shift challenge in a data-driven manner, assembling the largest marine image
dataset for training our foundation model to promote its generalization abil-
ity and robustness. Furthermore, we do not choose image enhancement as our
key task since it cannot provide semantic understanding for marine images or
instances within the images.
Potential broader impact. MarineInst not only transforms how the existing
algorithms analyze and interpret images but also presents new opportunities and
challenges for both marine and computer vision communities. MarineInst could
also serve as a teaching aid, providing visual aids and analyses across subjects
like biology, enhancing monitoring capabilities, and enabling more sophisticated
and efficient image captioning, manipulation, and synthesis.
Limitation and future work. Hallucinations. There are still some halluci-
nations in the generated semantic captions from MarineInst. Multiple instances
within one image cropping lead to inaccurate captions for the required instance
mask. We believe further instruction-following instance understanding could help
alleviate the hallucinations even based on noisy data for training. We leave more
accurate instance captioning as our future work.

4.3 Related Works

Utilizing CLIP for open-vocabulary tasks. As CLIP models [66] are opti-
mized contrastively at the global image-text level, they cannot directly output
the dense predictions (e.g., bounding box, and segmentation predictions) at the
region or pixel level. Recent works [35,54,59,65,81,91] demonstrate the feasibility
of adopting and locking a pre-trained CLIP model for open-vocabulary object
detection and image segmentation tasks. The open-vocabulary setting suits the
general open-world visual perception, where the target of interest is recognized
based on a natural language description. RegionCLIP [46] proposed to perform
the regional visual feature and the textual conception alignment to promote
the generalization ability to unseen categories. SegCLIP [59] proposed to per-
form open-vocabulary segmentation in an annotation-free manner by gathering
patches with learnable centers to semantic regions. MaskCLIP [31] alters the
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last pooling layer of CLIP to produce dense predictions and utilize the gener-
ated pseudo-labels to train a segmentation model. MasQCLIP [81] then further
proposed to perform knowledge distillation through the self-training with pseudo
labels. However, these algorithms are mainly optimized and evaluated on the in-
air datasets, such as COCO [55] and LVIS [34]. Our MarineInst presents the
first attempt to perform open-vocabulary instance segmentation in the marine
field. Another key difference between our MarineInst over the existing open-
vocabulary dense prediction algorithms is that MarineInst performs open-ended
semantic instance caption generation while existing algorithms mainly focus on
category-level semantics.
SAM and SAM Variants. SAM has been widely used for medical image seg-
mentation [79], satellite images [24,68], remote sensing [77], camouflaged object
segmentation [43,73], challenging scenarios [25] and other applications [67,83,92].
MSA [79] designed an adapter design for transferring SAM to a counterpart in
segmenting medical images and SAM-adapter [25] proposed to perform camou-
flaged object segmentation and shadow detection. ClassWise-SAM-Adapter [64]
proposed the class-wise adapter to perform the semantic segmentation. How-
ever, the number of adapters is subject to the number of semantic classes.
RSPrompter [24] proposed to fine-tune SAM to the satellite images and perform
instance segmentation through the designed prompt, while the object instances
are quite limited. However, these algorithms failed to generate instance masks
and still require prompts from the users for required mask generation.
VLM. BLIP series [50, 51] bootstrap vision-language pre-training from frozen
pre-trained image encoders and frozen language decoders. Based on BLIP-2 [50],
MiniGPT-4 [93] proposed a projection layer to align pre-trained vision encoder
to frozen LLMs, and exhibited respectable zero-shot image comprehension in
dialogues. LLaVA [57] aimed to optimize the linear layer based on the con-
structed instruction-follow data. MarineGPT [89] is the first vision-language
model in the marine field. It is further optimized by the domain-specific data and
demonstrates a strong zero-shot recognition ability for marine data. Moreover,
MarineGPT could usually generate more detailed and comprehensive captions
than BLIP series [50,51], by utilizing a frozen LLM. Our MarineInst proposes to
harness the power of VLM for generating detailed and comprehensive instance
captions.

4.4 Future Directions

Video understanding. Currently, MarineInst mainly focuses on the image-
level instance visual description. How to extend our MarineInst to video field [86]
for temporal understanding will be our future work.
3D reconstruction and scene understanding. Our method could also be
utilized for promoting the 3D reconstruction and scene understanding [26]. We
could employ our MarineInst to perform instance visual descriptions and then
utilize the instance masks for highlighting the foreground objects to obtain high-
quality point clouds. In this way, we can effectively bridge the 3D semantic gap
at the instance level.
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Underwater enhancement. The generated instance masks could also be uti-
lized for promoting the underwater image enhancement performance by high-
lighting the foreground objects with precise boundaries. The automatic instance
mask generation and underwater image enhancement could formulate a mutually
beneficial system.
Instance-level VLM. In this work, we demonstrate that our MarineInst could
be utilized for instruction-following tasks, including both instruction-following
instance understanding and segmentation. With such instance-level instruction-
following data, we can further optimize the instance-level VLM. A dataset with
instance-level captions could be generated using our pre-trained models. A new
set of evaluation benchmarks and metrics for measuring the performance of
instance understanding are required.
Controllable image synthesis. Similarly, MarineInst produces valuable and
scalable training data for controllable image synthesis [78]. The precise local-
ization and comprehensive semantic captions will guide the model for better
controllable image synthesis performance.
Spatial reasoning. Spatial reasoning capability [22] not only empowers the
model with common sense knowledge about object sizes but also makes it useful
for interaction tasks. To achieve this, the spatial localization and the instance
captions of the instance masks are valuable for constructing the instruction-
following data to enable spatial chain-of-thought for solving complex spatial
reasoning tasks.
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