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Describe the object in mask:
The object in this mask is a sea turtle 
swimming in the ocean surrounded by 
corals and fish. The turtle is brown with a 
yellow stripe on its head and flippers. It is 
swimming near a group of small fish.

single	mask

Instruc0on-following	instance	understanding

Describe the relationship between the object 
with mask ID “006” and object with “004”:
The object in mask with mask ID “006” is a 
blue and yellow fish. The object in mask 
with mask ID “004” appears to be sea 
anemone. The fish appears to be swimming 
over the sea anemone.

mul0ple	masks

Instruc0on-following	instance	understanding

“Segment the long and slender eel”

Instruc0on-following	segmenta0on

“The Steller sea lion, the largest of the eared seals, 
boasts a bulky physique and a loud roar, often 

found on rugged coastlines.”

“The Atlantic white-sided dolphin, known for its 
distinctive yellow and white patterning, is a gregarious 

and acrobatic inhabitant of the North Atlantic.”

Text-to-image
synthesis

point
prompt

box
prompt

Interac0ve	
labeling

Open-vocabulary
instance	segmenta0on

In this enchanting underwater snapshot, two 
distinct fish are depicted in an aquarium 
setting, each illuminated by a tranquil blue 
light. The first is a striking black and white 
striped fish, notable for its elongated, flowing 
tail, elegantly swimming through the clear blue 
waters. Complementing this is another sizable 
fish, captured in the same serene environment, 
its form highlighted by the blue lighting that 
reveals a pointed nose and a lengthy tail, 
suggesting a sense of graceful motion within 
the aquatic space. Together, these fish, each 
with their own unique features and illuminated 
by a calming blue glow, embody the dynamic 
and diverse life that thrives beneath the surface.
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aligns user intents
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Open-vocabulary
tasks

“The object in this mask is a blue spotted stingray. It has blue 
spots all over its body and it appears to be swimming in the 

water. It may be found in the ocean or other bodies of water.”

“The is a mask of a green sea slug with small white spots on 
its body. It appears to be swimming in water with green 

algae.”

“The mask shows a shark with its mouth open and its teeth 
visible. It appears to be swimming in the ocean with its mouth 

open, possibly trying to capture prey.”

“The object in the mask appears to be a young sea lion pup. 
The pub is lying on its side with its eyes open and looking 

toward the camera. The pub has a brown and black coat with a 
lighter brown belly”

“The mask depicts a large fish swimming in the ocean. The 
fish is brown and white with large eyes and sharp teeth. It 

appears to be a grouper fish”

Instance	visual
descrip0on

“The object in this mask is a fish swimming in an aquarium. 
The fish is black and yellow with a long tail. It has large eyes 

and is swimming in the water with other fish.”

Fig. 1: We present MarineInst, a powerful and flexible marine foundation model, which
could support various downstream tasks. Best viewed in color.

Abstract. Recent foundation models trained on a tremendous scale
of data have shown great promise in a wide range of computer vision
tasks and application domains. However, less attention has been paid
to the marine realms, which in contrast cover the majority of our blue
planet. The scarcity of labeled data is the most hindering issue, and
marine photographs illustrate significantly different appearances and
contents from general in-air images. Using existing foundation models
for marine visual analysis does not yield satisfactory performance, due
to not only the data distribution shift, but also the intrinsic limitations
of the existing foundation models (e.g ., lacking semantics, redundant
mask generation, or restricted to image-level scene understanding). In this
work, we emphasize both model and data approaches for understanding
marine ecosystems. We introduce MarineInst, a foundation model for
the analysis of the marine realms with instance visual description,
which outputs instance masks and captions for marine object instances. To
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train MarineInst, we acquire MarineInst20M, the largest marine image
dataset to date, which contains a wide spectrum of marine images with
high-quality semantic instance masks constructed by a mixture of human-
annotated instance masks and model-generated instance masks from our
automatic procedure of binary instance filtering. To generate informative
and detailed semantic instance captions, we use vision-language models
to produce semantic richness with various granularities. Our model and
dataset support a wide range of marine visual analysis tasks, from image-
level scene understanding to regional mask-level instance understanding.
More significantly, MarineInst exhibits strong generalization ability and
flexibility to support a wide range of downstream tasks with state-of-the-
art performance as demonstrated in Figure 1. Project website: https:
//marineinst.hkustvgd.com.

Keywords: Foundation model · Instance segmentation · Instance cap-
tioning · Marine visual analysis

1 Introduction

Marine and underwater visual analysis [7,63,64,66] stands as a crucial frontier in
environmental science [7], offering unparalleled insights [66] into one of the planet’s
least explored but most diverse ecosystems. The oceans, covering over 70% of the
Earth’s surface, are teeming with life and play a pivotal role in global climate
regulation, yet remain largely unexplored and poorly understood due to their
vastness and inaccessibility. Analyzing and understanding marine imagery/video
has gained increasing attention in the computer vision field, such as marine object
classification [71, 72], object detection [14, 15, 18], semantic segmentation [10,
23], salient object segmentation [24], underwater image restoration [5], depth
estimation [56], and other researches [43,49].

Recent foundation models [28,31,32,38,44,70] provide a powerful and flexible
solution for image analysis and understanding. Driven by a significant scale
of training data [17, 29, 36, 47] and efficient deep network backbones [13, 19],
foundation models demonstrate a strong generalization ability to effectively
recognize unseen images and flexibility to support various downstream tasks.
Two notable milestones are SAM for segmenting anything [28] and CLIP for
vision-language analysis [44]. Particularly, SAM is trained on 11 million images
with 1 billion masks to effectively generate precise masks for a wide spectrum
of image data. CLIP bridges the image space and the textual space through
contrastive learning on millions of image-text pairs from public websites. Both
SAM and CLIP demonstrate strong zero-shot generalization ability. In the
context of understanding marine environments, can we directly utilize these
existing foundation models for marine visual analysis?

We empirically notice two challenges: one is the data distribution shift and
another comes from the intrinsic challenges of marine visual data. SAM and
CLIP are primarily learned on terrestrial, indoor, and outdoor images. Marine
images only occupy a minority of CLIP’s training data [57]. Furthermore, it is

https://marineinst.hkustvgd.com
https://marineinst.hkustvgd.com
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MarineInstover-segmentationfalse negativesfalse positives SAM

“The object in the mask appears to be a yellow and 
brown seahorse. The seahorse has a large head and 

body with a small tail, and it has small white dots 
all over its body.”

partial-segmentation

Fig. 2: Comparison between SAM and MarineInst. Best viewed in color and zoom in.

worth noting that the marine/underwater images illustrate significantly different
appearances and contents from the in-air images: underwater images are usually
plagued by specific conditions, e.g ., low visibility [40], dynamic lighting [73],
light scattering, color absorption and distortion [5], and motion blur; the marine
images contain more unusual and diverse contents, especially the complicated
marine creatures with irregular boundaries [23], camouflaged [33], non-rigid [18],
bright-colored and textured properties [4]. The untrimmed background [65] makes
it difficult to consistently identify and isolate the object of interest under crowded
and challenging scenes. These two challenges lead to the fact that existing
foundation models cannot effectively recognize marine images. Adapting existing
foundation models to handle the unique characteristics of marine imagery requires
substantial modifications and domain-specific designs.

This motivates us to build a new marine foundation model. With substantial
marine images meticulously collected, we have to determine the fundamental
property/task for effective and efficient marine visual analysis. SAM is based
on image segmentation, generating semantic-agnostic masks automatically or
based on user prompts interactively. However, the generated masks are inaccurate,
without semantics, leading to false positives, false negatives (missing unusual
marine creatures), over-segmentation, and partial-segmentation (parts of objects
segmented) on marine data, as shown in Figure 2. CLIP is based on a vision-
language task, which computes cross-modality image-text similarity, but is limited
to image-level scene understanding. CLIP cannot yield instance-level or region-
level understanding, explicitly detecting or segmenting the interest of objects.

Taking into account such limiting factors, we selected instance visual de-
scription as the key task of our foundation model, simultaneously generating
dense instance masks and their instance captions. Instance visual description
can be viewed as the combination of instance segmentation and instance cap-
tioning built into a single objective. Unlike image-level recognition [12], object
detection [14, 39, 67] with axis-aligned/oriented bounding boxes and semantic
segmentation [23], instance segmentation is valuable to efficiently identify and
localize diverse marine / underwater entities with complex object boundaries. Pre-
cise instance segmentation promotes comprehensive marine studies, e.g ., object
counting [50], species identification [71,72], biological trait detection [26], cover
estimation [7], benthic composition [53], population and distribution computa-
tion [73], symbiotic relationship prediction [62] to name a few. We do not adopt
more fine-grained segmentation (e.g ., segmenting the fin of fish or tentacles of
octopus) as the key task since the biologically integral component is challenging
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to define and generalize to a wide spectrum of marine creatures. Furthermore,
existing instance segmentation [34, 35] is limited to pre-defined categories and
only provides category-level semantics. Our instance visual description extends
instance segmentation with open-vocabulary instance captioning, generating in-
stance masks and their instance captions with semantic richness from multiple
granularities. Example predictions are demonstrated in Figure 2.

Driven by such design choices, we formulate MarineInst, a strong foundation
model to perform instance segmentation and instance captioning. To address
over-segmentation and partial-segmentation issues, we propose binary instance
filtering, a simple yet effective technique to filter out low-quality non-instance
masks. Through simultaneous mask generation and binary instance filtering, our
MarineInst could effectively perform precise instance mask generation. Notably,
MarineInst is robust to accurately identify and delineate a wide range of marine
creatures. To address the semantic-agnostic or limited semantics issue, we perform
instance captioning to generate informative and comprehensive semantic captions
for the generated instance masks by harnessing the power of vision-language
models (VLMs) [31,38,44,66,70] as illustrated in Figure 3. We utilize the powerful
VLMs to achieve a more plentiful granular level of understanding for instance
segments within the image, going beyond mere object recognition to comprehend
complex attributes and relationships depicted in visual data. MarineInst could
perform instance visual descriptions of marine images with semantic richness
from various semantic granularities.

Our MarineInst is driven by our constructed MarineInst20M dataset with
semantic instance mask annotations, which is the largest marine image dataset to
date. MarineInst20M, consisting of 2.4 million marine images with around 20 mil-
lion instance masks, is a mixture of 1) existing public underwater/marine datasets
with available various formats of annotations, 2) our collected images with manu-
ally labeled annotations, and 3) public Internet marine images with automatically
generated instance masks by our MarineInst. With carefully constructed visual
data with remarkable diversity, MarineInst20M could effectively alleviate the
false negative issue. The formulated instance visual description not only provides
a more meaningful, efficient, and valuable solution for visual analysis but also
brings challenges to both computer vision and marine communities. Extensive
experimental results demonstrate that our foundation model MarineInst and
dataset MarineInst20M yield strong performance on vision-language tasks in-
cluding salient object segmentation, underwater object detection, image/instance
captioning, text-to-image synthesis, and instruction-following tasks. The main
contributions of this paper are as follows:

– We propose MarineInst, a powerful and flexible marine foundation model,
which could perform the instance visual description task in an automatic or
interactive manner. Our instance visual description task includes instance
segmentation and instance captioning.

– We propose instance segmentation with binary instance filtering to enable
a strong generalization ability to unseen marine images for obtaining high-
quality instance masks; we also propose to perform instance captioning for
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visual descriptions of instance masks with various granularities, yielding dense
and informative mask-level semantic instance captions.

– We propose MarineInst20M, the largest documented marine image dataset to
date, with remarkable visual diversity and semantic instance mask annotations.

– We demonstrate the strong performance of MarineInst trained on Marine-
Inst20M for various marine analysis tasks, demonstrating a wide spectrum of
downstream applications in both computer vision and marine communities.

2 Related Work

2.1 Marine Visual Analysis

Marine visual analysis and understanding [8, 15, 33, 37] promote to unveil the
mysteries of the oceans and harness technology to elevate marine research [33],
conservation [20], and industrial endeavors [10]. Unlike in-air images, underwater
images often suffer from quality degradation [5] due to scattering and absorption
of light, resulting in poor contrast, blurring, and color distortion. The underwater
environment is filled with moving particles, varying textures, and other organisms
that can be mistaken for the target object [14]. Besides the appearance shift,
marine creatures are incredibly diverse in terms of shapes, sizes, and colors [49].
Effectively handling such variability and correctly recognizing a wide range of
marine creatures is a significant challenge. MarineDet [18] proposed to perform
open-marine object detection and detect a wider range of marine creatures than
existing close-set underwater object detection algorithms. Different from detection,
instance segmentation [35] provides a feasible and effective way for object-centric
instance understanding, generating precise boundaries for each instance. Through
dense pixel-level semantic analysis, researchers could gain insights into social
structures, predation, symbiotic relationships, and other behavioral patterns of
marine creatures. Another similar line of research to our work is underwater salient
object segmentation [21,24] and salient instance segmentation [35], detecting and
segmenting the salient objects from underwater visual images. However, there is
no consistent and clear definition of “salient objects” and the salient objects are
highly subject to humans, varying from people.

2.2 Foundation Model

Foundation models (e.g ., CLIP [44], ALIGN [25], SAM [28], and VLMs [31,32,
38, 66, 70]) have been widely favored by the whole CV community. Optimized
by millions of image-text pairs, CLIP [44] demonstrated a strong zero-shot
recognition ability to unseen images. The further BLIP series [31,32] proposed
to bridge the frozen visual and language foundation models based on Q-Former.
However, Both CLIP and BLIP are limited to image-level scene understanding
and fail to provide fine-grained and regional instance understanding. Recent
works [18,67] proposed to utilize CLIP for open-vocabulary object detection [27,67]
and semantic segmentation [58, 59, 69], supporting to recognition of a wide range
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of object categories. However, these works are mainly limited to terrestrial
images [17,36,48,68], only showing a limited ability to understand marine images.

SAM [28] optimized by vast and diverse training data, has demonstrated
a strong ability to segment visual elements with precise masks in a semantic-
agnostic manner. Receiving various kinds of prompts (e.g, point, box, and mask)
from the user, SAM could yield the required mask through interactive labeling and
iterative refinement. However, without any prompt, the automatically generated
masks from SAM are not always meaningful or required due to the nature of
lacking semantics. The redundant mask generation of SAM leads to drastic
over-segmentation and SAM demonstrates a poor ability to segment camouflaged
objects [52], objects with irregular boundaries [33] or remarkable pose and
appearance variations [66]. The intrinsic challenges of marine images lead to
significant false negative and partial-segmentation issues. Furthermore, SAM
cannot provide semantic predictions for generated masks, which heavily restricts
SAM from solving semantic understanding tasks. SSA [9] represents an important
step towards a more sophisticated model for semantic scene understanding.
However, since only assigning the semantics of textual descriptions to generated
masks from SAM based on similarity computation, SSA cannot alleviate the
intrinsic issues of SAM. Grounded SAM [45] combines Grounding DINO [39]
and SAM to achieve text-guided segmentation while the ability to detect marine
objects is limited. OVSAM [60] proposed an open-vocabulary classification head
to generate the semantics for the masks labeled by the users. However, none of
these existing foundation models is specially designed for marine visual analysis
and thus demonstrates a poor marine analytical ability. We propose to present a
powerful and flexible foundation model in the marine field.

3 Method

3.1 Overview

Our marine foundation model has two main stages for predicting instance visual
description. The first stage performs instance segmentation to obtain the
instance masks, and the second stage performs instance captioning that
generates instance captions on the predicted instance masks. To improve the
accuracy of the instance masks, we devise a strategy for both training and
inference that uses binary instance filtering to remove non-instance masks. We
provide an overview of our MarineInst foundation model in Figure 3.

We summarize key differences between MarineInst and existing foundation
models in four aspects in Table 1: 1) whether the model is performing instance
understanding; 2) semantic richness; 3) semantic granularities; and 4) the in-
ference procedure. Specifically, CLIP [44] optimized by image-level captions,
cannot explicitly localize or yield fine-grained descriptions for object instances.
Semantic-SAM [30] generates masks with 6 semantic granularities through a
many-to-many matching design. The generated semantics of Semantic-SAM come
from pre-defined object categories in existing training datasets [17,48,68] (mainly
in-air objects). SSA [9] utilizes BLIP2 [31] for generating image captions for
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This is a mask of a 
shark swimming in 
the ocean. The shark 
is a black and white 
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This mask appears 
to be a picture of a 
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and is swimming in 
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to have its mouth 
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Fig. 3: The framework overview of proposed MarineInst. There are two components in
MarineInst: 1) automatic instance segmentation with binary instance filtering to
remove the non-instance masks; 2) instance captioning to generate meaningful and
comprehensive captions for generated instance masks based on frozen VLMs.

Table 1: Direction comparison between our MarineInst and existing foundation models.
Inference: A - Automatic, I - Interactive.

Methods Instance
Understanding Semantic richness Semantic granularities Inference

SAM [28] ✘ No semantics No semantics A , I
CLIP [44] ✘ Image-level scene understanding Scenario visual understanding A

Semantic SAM [30] ✓ Driven by pre-defined object categories 6 granularities (implicitly) A
SSA [9] ✘ Lacking fine-grained information Image-level scene understanding A , I

OVSAM [60] ✘ Only category-level information Pre-defined object categories (22K) I
Grounded SAM [45] ✓ Provided by users Pre-defined object categories I

MarineInst ✓ Detailed and comprehensive captions Open-ended caption generation A , I

the masks generated from SAM. SSA then extracts nouns from generated cap-
tions and utilizes CLIP to compute the similarity between extracted nouns and
cropped image regions for obtaining the final semantics. OVSAM [60] claimed to
segment and recognize approximately 22 thousand classes. However, OVSAM
cannot automatically generate instance masks without any prompt. Grounded
SAM [45] combines Grounding DINO [39] and SAM, where Grounding DINO
yields bounding box predictions based on text queries and then SAM is utilized for
mask generation based on box predictions. In contrast, MarineInst automatically
performs instance segmentation in an end-to-end manner.

3.2 Instance Segmentation

The instance segmentation component of MarineInst is built upon SAM [28].
MarineInst is continuously pre-trained on our MarineInst20M dataset to promote
the ability of MarineInst to extract efficient and effective marine feature represen-
tations. To alleviate the over-segmentation and partial-segmentation issues, and
also promote the accuracy of generated instance masks, we add binary instance
filtering in the mask decoder as illustrated in Figure 3.
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Binary Instance Filtering. To filter out the non-instance masks produced
by MarineInst, especially the meaningless masks or the masks without instance
semantics, we propose our binary instance filtering inside the mask decoder. We
generate “negative” (non-instance) masks based on “positive” instance masks
labeled by humans. We randomly sample the point prompt inside the human-
annotated instance mask and infer SAM (ViT-H backbone) to generate one
SAM-generated mask. If the predicted IoU from the IoU branch is over 0.88
(as suggested by SAM for high-quality mask generation) and the calculated IoU
between the SAM-generated mask and the human-annotated instance mask is
below a user-defined threshold (0.5 in this work), we regard this SAM-generated
mask as “negative” mask. We formulate a lightweight binary filtering branch to
enable MarineInst to discriminate whether the generated masks are instance
masks. We conduct attention-based feature interaction between mask generation
and binary instance filtering:

Lbin. = −(y log(p) + (1− y) log(1− p)), p = MLP(FI , Concat(TM , TP )), (1)

where y denotes the binary ground truth. TM and TP are the learnable mask
tokens and prompt tokens, respectively. FI is the image embedding from the
image encoder and MLP is a lightweight MLP layer. Please note that both “positive”
and “negative” masks are used for optimizing our MarineInst.

3.3 Instance Captioning

With instance segmentation, we perform an essential step forward in conducting
the comprehensive instance captioning for the generated instance masks. Different
from the existing works [9,22,30], which utilized the pre-trained CLIP [44] for gen-
erating category proposals for the synthesized masks by computing the similarity
between image regions and textual queries, we propose to generate open-ended
semantic instance captions by harnessing the power of LLMs. To achieve this, we
leverage the frozen VLMs to generate comprehensive and informative semantic
instance captions as demonstrated in Figure 3. It is worth noting that MarineInst
is flexible to various VLMs. With instance masks M = {m1,m2, . . . ,mn}, we
first crop the image regions R = {r1, r2, . . . , rn} from the whole image based on
the localization information from the instance masks. Then we infer the frozen
VLMs with the following prompt template: “The image is <image>. Describe
the object in this image: ”, where <image> is the image token. The caption is
generated as follows:

θ∗ = argmax
θ

N∏
j=1

P (θj | θ<j , x), (2)

where x indicates the feature embedding of the cropped image region r after
the frozen ViT image encoder and Q-former [31,66]. x is fed into a frozen LLM
(e.g ., Vicuna [11]) for instance captioning. θ∗ is the optimal generated detailed
and comprehensive captions for r. We obtain Θ = {θ1, θ2, . . . , θn} based on M .
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Through semantic instance captioning, we transform image-level understanding
to mask-level instance understanding, significantly elevating the granularities
and richness of image interpretation.

3.4 Dataset Construction and Model Training

MarineInst20M consists of 3 main data sources: 1) existing public marine/underwater
datasets (from object counting [50], retrieval [54], detection [14,37], tracking [6,61],
segmentation tasks [49,73]); 2) manually collected images from public/private
data and YouTube videos; and 3) public Internet images.

The existing public datasets contain various formats of annotations (point,
box, and mask). For images with point/box annotations, we run inference with
SAM (ViT-H) with point/box prompts to generate the instance masks. Note
that we only preserve the high-quality generated masks with predicted IoU over
0.88. For images with mask annotations, we only pick up desired images with
clear instance masks for training. For manually collected images, we manually
label them using an internal labeling tool built upon SAM. For Internet images,
we adopt crowdsourcing to scrape public Internet images with alt-texts from
Flickr [1], Gettyimages [2], and Shutterstock [3].

We implement an iterative scheme to train MarineInst. We first utilize con-
verted high-quality instance masks from existing public datasets and our manually
labeled instance masks to optimize our MarineInst model. After that, we use
the trained MarineInst model for automatic mask generation to enlarge the
annotated masks for training. To ensure the automatically generated masks are
high-quality instance masks, inspired by [16], we construct 2.65M mask samples
(1.89M “positive” instance masks labeled by humans or from public datasets
and 0.76M “negative” non-instance masks constructed from SAM) with binary
labels for binary instance filtering. We train a binary classifier to distinguish
positive and negative masks (refer to Section 3.2), and thus we can effectively
alleviate over-segmentation and partial-segmentation issues by applying binary
instance filtering to discard non-instance masks. It is worth noting that mask
generation and binary instance filtering are conducted simultaneously. We fi-
nally generate instance masks and perform binary filtering for the public images
from the public Internet. In total, we obtained 1.89M human-annotated instance
masks (from both public datasets and our annotators) and 17.3M automatically
model-generated instance masks after binary instance filtering.

For instance captioning, we assign the original category label to the converted
instance mask if the semantic annotations exist. For those model-generated
instance masks without semantics, we run an inference with VLMs to generate
the semantic captions (refer to Section 3.3). We then mix them and construct our
MarineInst20M dataset, which contains around 20 million instance masks with
detailed semantic instance captions. It takes approximately 4,480 human hours
to label the instance masks, and 24,560 GPU hours (RTX 3090) to automatically
generate instance masks with semantic captions. To cope with image credits
and licenses for data redistribution, we will release MarineInst20M dataset with
images in raw URL format and annotations in JSON format for research purposes.
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4 Experiments

4.1 Implementation Details

We adopt SAM as an effective backbone for instance segmentation with binary
instance filtering inside the mask decoder. MarineInst is continuously pre-trained
on our MarineInst20M dataset (2.42M images and 19.2M instance masks in
total). We adopt the combination of point prompt (3 random points inside the
mask) and box prompt as the training prompt while ignoring the mask prompt.
For instance captioning, we infer frozen VLMs, such as CLIP [44], BLIP2 [31]
and MarineGPT [66]. Our MarineInst is flexible for various VLMs. We adopt
BLIP2 and MarineGPT as the main demonstration in this paper. We set the
maximum generated tokens to 50 for generating captions. Comparisons. We
include SAM [28], Semantic-SAM [30], SSA [9] (SAM+BLIP2 [31]+CLIP [44])
and OVSAM [60] for comparison. SAM generates masks under the automatic
mode or with prompts. We set the semantic granularity of Semantic-SAM to 3
for automatically producing masks. SSA assigns semantics from BLIP2 to the
generated masks from SAM. OVSAM generates masks with point or box prompts.

4.2 Results on Instance Segmentation

We perform instance segmentation to evaluate the ability of various foundation
models to generate precise instance masks. We adopt 500 unseen marine images
with manually labeled instance masks for semantic-agnostic evaluation, where
we regard all instances as the “foreground” category (semantics are ignored). We
leave semantic accuracy evaluation of generated semantic captions in Section 4.4.
Following evaluation metrics of the COCO dataset [36], we report the AP scores
of the various algorithms under two evaluation types: bbox and segm. We compute
results under three settings: “ A ” - Automatic (no human prompts are provided);
“⋆” - Point (one random point inside the instance mask is chosen as prompt);
“ ” - BBOX (the bounding box of the instance mask is regarded as prompt).
Note that we do not compute the AP scores of evaluation type bbox under the
“BBOX” setting since the bounding boxes are already given. For fair comparisons,
all methods are evaluated with the same prompts.

The qualitative and quantitative results are illustrated in Figure 4 and Table 2,
respectively. As demonstrated, SAM cannot automatically generate reasonable
or accurate instance masks. Unsurprisingly, SAM obtains very low scores un-
der the automatic setting due to over-segmentation and partial-segmentation
in Table 2. With the point or box prompt, SAM could achieve reasonable per-
formance, demonstrating its strong ability for mask generation as an interactive
tool. Based on SAM, SSA generates wrong semantics based on inferior mask
predictions from SAM in Figure 4. Semantic-SAM with semantic granularity
3 (“instance-level”) also fails to achieve meaningful instance segmentation and
nearly cannot achieve the small- and medium-sized object instance segmentation
as demonstrated in Table 2. Note that Semantic-SAM cannot generate explicit
semantic captions for generated masks. Meanwhile, OVSAM demonstrates a poor
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Input SAM Semantic-SAM

SSA OVSAM MarineInst

“The is a mask of an eel (probably a moray eel) with its mouth 
open and looking directly at the camera. The eels to be about 18 

inches long and has a brown and white striped body.”

“Shark”“Arafed fish”

Fig. 4: Comparison with existing SOTA algorithms. MarineInst could effectively address
the over-segmentation and partial-segmentation issues of SAM and Semantic-SAM.
Meanwhile, MarineInst could generate meaningful and comprehensive semantic captions
faithful to each generated instance mask, while others cannot.

Table 2: Instance segmentation results of
various algorithms under settings: “ A ” -
Automatic; “⋆” - Point; “ ” - BBOX.

Method
AP ↑ APs ↑ APm ↑ APl ↑

bbox segm bbox segm bbox segm bbox segm

SAM A [28] 5.9 5.8 0.3 0.4 3.2 3.5 15.2 14.7

Semantic-SAM [30] A 2.5 0.0 0.0 0.0 0.0 0.0 5.3 0.0

MarineInst A 30.8 32.7 7.6 8.8 32.1 35.5 40.2 40.8

SAM⋆ [28] 59.0 63.0 64.3 77.8 70.2 77.3 48.5 47.4
OVSAM⋆ [60] 46.8 49.0 42.4 43.8 50.1 53.9 44.7 46.4
MarineInst⋆ 73.1 75.4 77.5 86.6 82.5 86.7 64.1 62.8

SAM [28] − 93.5 − 95.3 − 95.7 − 92.2
OVSAM [60] − 79.4 − 63.1 − 81.7 − 86.9
MarineInst − 95.4 − 96.4 − 97.3 − 93.8

Table 3: Underwater salient object seg-
mentation results of using different back-
bones on USOD10K datasets [21]. Evalua-
tion metrics followed [21].

Method Back. Sm ↑ Emax
ϵ ↑ maxF ↑ MAE ↓

SAM [28] ViT-B 0.8695 0.9199 0.8445 0.0387
MarineInst ViT-B 0.8773 0.9276 0.8537 0.0353

SAM [28] ViT-L 0.8843 0.9279 0.8658 0.0336
MarineInst ViT-L 0.8931 0.9325 0.8713 0.0304

SAM [28] ViT-H 0.9034 0.9374 0.8812 0.0287
MarineInst ViT-H 0.9103 0.9411 0.8876 0.0256

ability to generate reliable semantic category predictions (e.g ., misrecognizing
“eel” to “shark”) for the inferred masks from point/box prompts provided by users.
Furthermore, even with the point/box prompts, OVSAM still cannot achieve
very precise instance segmentation since both feature extraction and mask gen-
eration abilities of OVSAM have been weakened after knowledge distillation.
MarineInst demonstrated much stronger instance segmentation ability under
all three settings. Under the most challenging automatic setting, MarineInst
achieves 30.8/32.7 AP scores while SAM only has 5.9/5.8. MarineInst effectively
alleviates the over-segmentation and partial-segmentation issues. It is also worth
noting that MarineInst could generate instance masks with corresponding infor-
mative semantic descriptions, which enable the extraction of nuanced information,
including appearance, pose, color, and other attributes in Figure 4.
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“The ringed seal, with its distinctive pattern of dark spots surrounded by light rings, is a vital prey species 
in Arctic ecosystems.”

“The California sea otter, with its endearing face and habits of using tools to open shells, is a keystone 
species for marine ecosystems.”

“The Amazonian river dolphin, a freshwater mammal, surprises with its pink hue and elongated snout for 
hunting fish in murky waters.”

“The Hawaiian monk seal, critically endangered and native to the Hawaiian Islands, is known for its 
monk-like head shape.”

This image juxtaposes two formidable vessels, 
each serving a unique purpose on the vast expanse 
of the sea. The first is a large, red and white deep-
sea scientific research vessel, its open hull 
indicative of its exploratory mission. Equipped 
with two large cranes on the back deck and a 
substantial scientific instrument atop, it is the 
epitome of human ingenuity in the quest for 
oceanographic knowledge. Nearby, a large tanker 
ship asserts its presence with a robust hull 
designed for endurance and capacity, its deck 
crowned by several towering masts that speak to 
its commercial navigational prowess. Together, 
these ships represent the diverse nature of 
maritime endeavors, from the pursuit of scientific 
discovery to the necessities of global commerce.

This image reveals the rich tapestry of marine 
biodiversity, where a black sea urchin rests 
unassumingly on the coral reef floor. Encircled by 
an array of small rocks and teeming with various 
sea life, the urchin's spiny appearance adds texture 
and depth to the underwater landscape. Sharing 
this aquatic realm, an octopus with a captivating 
pattern of brown and white stripes stretches out 
across the seabed. Its two large, watchful eyes and 
all eight legs splayed outwards, the octopus is an 
embodiment of the adaptability and complexity of 
oceanic creatures, each contributing to the 
dynamic ecosystem of the reef. w/o fine-tuning w/ fine-tuning

w/o fine-tuning w/ fine-tuning

w/o fine-tuning w/ fine-tuning

w/o fine-tuning w/ fine-tuning

semantic instance captions 

semantic instance captions 

image
storytelling

(a) (b)

Fig. 5: (a) Image storytelling based on MarineInst. (b) Marine text-to-image synthesis
based on stable diffusion model [46] (“stable-diffusion-v1-5 ”).

4.3 Downstream Tasks

We demonstrate the robustness of our foundation model with following down-
stream tasks: (1) salient object segmentation; (2) semantic instance captioning
and image storytelling; (3) text-to-image synthesis; and (4) instruction-following
tasks. We also demonstrate underwater object detection in the supplementary.
Salient object segmentation. We utilize MarineInst for underwater salient
object segmentation on the USOD10K dataset [21]. We regard the image size
as the box prompt to generate the salient object mask. SAM is included for
comparison. The heavy image encoders of both SAM and MarineInst are frozen
and we only optimize the prompt encoder and mask decoder. We demonstrate that
MarineInst is more effective than SAM on underwater visual analysis in Table 3,
indicating a stronger feature extraction ability.
Semantic instance captioning and storytelling. MarineInst could auto-
matically generate the instance mask with semantic captions, making it an
effective and comprehensive image analysis and labeling tool, significantly re-
ducing the need for manual annotations. We could perform comprehensive and
informative image storytelling by asking ChatGPT [41] to generate image-level
captions based on generated instance-level semantic captions, as demonstrated
in Figure 5(a). Compared to mask-aligned descriptions [55], our captions are
automatically generated.
Text-to-image synthesis. The constructed MarineInst20M dataset has a signif-
icant value for promoting marine text-to-image synthesis. The semantic captions
for the close-up images that contain rich information (including the pose, color,
texture, boundary, and appearance of objects), will guide a stronger model to
generate photo-realistic and reasonable image outputs in Figure 5(b).
Instruction-following tasks. We provide instruction-following instance un-
derstanding results in Figure 6 under two settings: single mask and multiple
masks (assigned with mask IDs). The latter setting enables multiple instance
understanding simultaneously. After the instruction-following tuning, MarineInst
demonstrates a powerful ability to understand the instances visualized in mask
due to the help of visual prompts [51]. However, MarineInst could only work ef-
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Describe the object in mask:
The object in the mask appears to be a fish with a blue and 
yellow body. it has a black and white striped tail, and black 
and white spots on its body. it also has a yellow and black 
striped fin.

Describe the object in mask with ID “003”:
This mask shows a turtle swimming in an aquarium. the 
turtle is surrounded by other fish and has a long neck and a 
large body. it appears to be swimming in an aquatic 
environment with other marine animals.

Describe the object in mask with ID “021”:
This mask shows an underwater scene with coral and fish 
swimming around. it appears to be a coral reef with fish 
swimming in the water. the colors are mostly blue and 
green, and there are some plants growing on the coral.

Describe the object in mask with ID “000”:
This mask appears to be a colorful fish swimming in a coral 
reef. it is likely an angelfish species, as it has yellow and 
blue markings on its body. 

Describe the relationship between object in mask with ID 
“000” and “001”:
The object in mask with ID 000 appears to a pink sea 
anemone. The object in mask with ID 001 is a blue and 
yellow fish swimming in the water. it appears to be 
swimming over the sea anemone.

MarineInst+GPT-4V

Describe the object in mask with ID “021”:
The object in mask with mask ID "021" appears to be a fish 
with a distinct, deep-purple or maroon body. It has a classic 
fish shape, with a streamlined body for efficient movement 
in the water. The dorsal fin is set towards the back of the 
body, which is typical of many fish species, and the tail fin 
appears to be forked, aiding in swift propulsion.

Describe the object in mask with ID “022”:
The object in mask with mask ID "022" appears to be a fish 
with a predominantly blue body and a distinctive yellow 
tail. The body shape is rounded with a somewhat pointed 
snout. This fish might be a type of surgeonfish or tang, 
which are known for their vibrant colors and a sharp spine 
or 'scalpel' on either side of their tail base, used for defense. 

Describe the object in mask with ID “003”:
The object in mask with mask ID "003" is the front flipper 
of the sea turtle. This flipper is a limb adapted for marine 
life, used for propulsion through the water. Sea turtle 
flippers are characteristically long and paddle-like, 
enabling powerful strokes for swimming.

Describe the object in mask with ID “014”:
The object in mask with mask ID "014" is the head of a sea 
turtle. The head appears large in proportion to its body, 
with the characteristic beak-like mouth that sea turtles are 
known for. This particular mouth shape is adapted for their 
diet, which can include a variety of marine organisms.

MarineInst+GPT-4V

single	mask

“Segment the fish”

“Segment the branching coral”

Describe the object in mask:
The object in this mask is a small red fish swimming in an 
aquarium. This fish is red in color and appears to be 
swimming in the water. it is difficult to determine any other 
details about the fish without additional context.

mul,ple	masks

Instruc,on-following
Segmenta,on

Instruc,on-following
Segmenta,on

Fig. 6: The results of instruction-following instance understanding and segmentation.
Texts in green are correct responses and red are wrong responses.

MarineInst (BLIP2)MarineInstSAM-F (SAM fine-tuned) (b)(a) MarineInst (MarineGPT) SAM + MarineGPT

“The is a mask of a giant clam (tridacna maxima) on a 
coral reef. The clam has a large, smooth, round shell 
with blue and white markings on the outer surface.”Anemone with blue spots on the top of a coral reef

Two fish are sitting on top of  a newspaper

“The is a mask of a fish that appears to be dead and 
sitting on top of a newspaper. It has brown and orange 

markings on its body. And its eyes appears to be 
closed.”

“The mask you provided shows a blur sea anemone on a 
coral reef. It is a type of sea anemone that has blue spots 

on its body.”

“The object in this figure is a brown and green stone 
with some brown plants growing on top of it. It appears 

to have a rough, textured surface with some crevices 
and grooves.”

Fig. 7: (a) Effects of binary instance filtering. (b) Effects of different VLMs on generating
instance captions for the generated masks.

fectively under scenarios that are not crowded. When there are multiple instances
small and crowded, MarineInst still fails to localize the object by mask IDs. We
attribute this failure to the poor OCR ability of frozen ViT backbones of the
existing VLMs, which are mainly optimized by image-level captions. We finally
combine MarineInst (generating instance masks) with GPT-4V [42]. GPT-4V
demonstrates a stronger ability to localize and understand user-selected instance
masks. However, we also noticed that GPT-4V would fail with self-occlusions be-
tween different instances. Our observations and dataset provide valuable insights
and contributions to marine instance understanding. We have also provided the
instruction-following segmentation results in Figure 6.

4.4 Ablation Studies and Further Analysis

Effects of binary instance filtering and model-generated annotations.
We aim to evaluate the effects of the proposed binary instance filtering and
the model-generated annotations. We directly fine-tune SAM (SAM-F) on our
MarineInst20M as a baseline. Please note that we also utilize the non-instance
masks for optimizing MarineInst with binary instance filtering. We report the
automatic instance segmentation results of 500 unseen testing images in Table 4
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Table 4: Effects of binary instance filtering
and model-generated instance masks. SAM-
F: SAM fine-tuned on MarineInst20M.

Method
binary instance

filtering
human-annotated
instance masks

model-generated
instance masks

AP ↑
bbox segm

SAM A [28] ✘ ✘ ✘ 5.9 5.8

SAM-F A ✘ ✓ ✘ 23.0 24.8

MarineInst A ✓ ✓ ✘ 28.2 30.1

SAM-F A ✘ ✓ ✓ 24.0 25.8

MarineInst A ✓ ✓ ✓ 30.8 32.7

Table 5: User studies. The average sat-
isfactory scores of 1,000 mask-caption
pairs (higher is better).

Method Satisfactory Score

SSA [9] 1.14
OVSAM [60] 1.56

MarineInst (BLIP2 [31]) 2.31
MarineInst (MarineGPT [66]) 3.52

(more results left in supplementary). With the binary instance filtering, MarineInst
demonstrates larger performance improvements over SAM-F, effectively allevi-
ating the over-segmentation and partial-segmentation illustrated in Figure 7(a)
as well. We also observe that the model-generated annotations could further
improve instance segmentation performance for both SAM-F and MarineInst.
Comparing different VLMs. We use our foundation model with different
VLMs to evaluate the ability to generate instance captions. We select BLIP2
as a generic model and MarineGPT as a marine-specific model for captioning.
We found that our foundation model could support both captioning models, but
using a specific VLM like MarineGPT yields long and comprehensive captions
with superior performance than BLIP2, as shown in Figure 7(b).
Effects of instance masks. We experiment with how instance masks affect
caption quality. We combine SAM with MarineGPT to generate masks with
semantics in Figure 7(b). When being provided with unsatisfactory masks from
SAM, MarineGPT cannot generate accurate and meaningful captions. Therefore,
our foundation model is valuable in that generating more accurate instance masks,
effectively alleviates error accumulation for caption generation.
Accuracy of semantic captions. We perform user studies to evaluate the
accuracy of the generated semantics produced by SSA, OVSAM, MarineInst
(BLIP2), and MarineInst (MarineGPT). We randomly picked up 1,000 mask-
caption pairs generated by each algorithm from the whole pool. For subject
fidelity, we asked 3 students from the marine biology field to answer 1,000
scoring questions, totaling 12,000 answers. The students are asked to answer
the question: “Please give your satisfactory score (from 1 to 5) based on the
correctness, helpfulness, and information richness of generated captions for the
instance mask”. The quantitative comparisons are provided in Table 5.

5 Conclusion

In this work, we have proposed the marine foundation model called MarineInst
to perform marine image analysis, which could generate instance masks with
semantics. Besides, the constructed MarineInst20M dataset could significantly
promote the performance of various downstream tasks. Our work paves the way
for future exploration of marine image analysis.
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